3 resultados para Vila Nova de Cerveira swimming pool
em Université de Lausanne, Switzerland
Resumo:
This work was aimed at analyzing the effects of perinatal choline supplementation on the development of spatial abilities and upon adult performance. Choline supplementation (3.5 g/L in 0.02 M saccharin solution in tap water) was maintained for two weeks before birth and for up to four weeks postnatally. Additional supplementation was maintained from the fifth to the tenth week postnatally. Spatial-learning capacities were studied at the ages of 26, 65, or 80 days in a circular swimming pool (Morris place-navigation task) and at the age of 7 months in a homing arena. Treatment effects were found in both juvenile and adult rats, and thus persisted for several months after the cessation of the supplementation. The choline supplementation improved the performance in the water maze in a very selective manner. The most consistent effect was a reduction in the latency to reach a cued platform at a fixed position in space, whereas the improvement was limited when the platform was invisible and had to be located relative to distant cues only. However, after removal of the goal cue, the treated rats showed a better retention of the training position than did the control rats. A similar effect was observed in a dry-land task conducted in the homing arena. The choline supplementation thus induced a significant improvement of spatial memory. But since this effect was only evident following training with a salient cue, it might be regarded as an indirect effect promoted by an optimal combination of cue guidance with a place strategy.
Resumo:
This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 +/- 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 +/- 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming.
Resumo:
The low frequency of self-peptide-specific T cells in the human preimmune repertoire has so far precluded their direct evaluation. Here, we report an unexpected high frequency of T cells specific for the self-antigen Melan-A/MART-1 in CD8 single-positive thymocytes from human histocompatibility leukocyte antigen-A2 healthy individuals, which is maintained in the peripheral blood of newborns and adults. Postthymic replicative history of Melan-A/MART-1-specific CD8 T cells was independently assessed by quantifying T cell receptor excision circles and telomere length ex vivo. We provide direct evidence that the large T cell pool specific for the self-antigen Melan-A/MART-1 is mostly generated by thymic output of a high number of precursors. This represents the only known naive self-peptide-specific T cell repertoire directly accessible in humans.