11 resultados para Vertical load influence
em Université de Lausanne, Switzerland
Resumo:
Several studies (on an inclined platform or with special shoes) have reported improved jump performance when the ankle was in a dorsiflexion (DF) position. The present study aims to test whether shoes inducing moderate DF modify vertical jump performance and energy cost. Twenty-one young, healthy female subjects (30 +/- 6 yr, 58 +/- 6 kg, O2max 45 +/- 3 mLxkg-1xmin-1, mean +/- SD) participated in the study. Jump performance was tested with subjects either wearing 4 degrees DF or standard (S) shoes. The jump tests (performed on a force platform) consisted of squat jump (SJ), countermovement jump (CMJ), and continuous jumps (CJ) during 15 seconds. Measured parameters were jump height, speed at take off, and maximal and average power. Oxygen uptake was measured on a treadmill while subjects ran at 95% of the anaerobic threshold during a 7-minute steady-state period. As compared with S shoes, DF shoes significantly improved the height of SJ (31 +/- 4 cm vs. 34 +/- 4 cm, p = 0.0001), CMJ (32 +/- 4 cm vs. 34 +/- 4 cm, p = 0.0004), and CJ (17.5 +/- 4.2 cm vs. 22.0 +/- 6.0 cm, p = 0.0001). Speed at take off was also significantly higher. Mean power significantly increased in SJ and CJ but not in CMJ. Oxygen uptake was not different between conditions (p = 0.40). Dorsiflexion shoes induce a significant increase in jump performance. These results are in accordance with the concept that a DF of the ankle may induce an increase of the length and strength of the triceps surae (higher torque). However, wearing DF shoes did not require more energy during running. Dorsiflexion shoes could be used to increase jump performance in several sports such as volleyball in which jump height is essential.
Resumo:
OBJECTIVES: Toll-like receptors (TLRs) are innate immune sensors that are integral to resisting chronic and opportunistic infections. Mounting evidence implicates TLR polymorphisms in susceptibilities to various infectious diseases, including HIV-1. We investigated the impact of TLR single nucleotide polymorphisms (SNPs) on clinical outcome in a seroincident cohort of HIV-1-infected volunteers. DESIGN: We analyzed TLR SNPs in 201 antiretroviral treatment-naive HIV-1-infected volunteers from a longitudinal seroincident cohort with regular follow-up intervals (median follow-up 4.2 years, interquartile range 4.4). Participants were stratified into two groups according to either disease progression, defined as peripheral blood CD4(+) T-cell decline over time, or peak and setpoint viral load. METHODS: Haplotype tagging SNPs from TLR2, TLR3, TLR4, and TLR9 were detected by mass array genotyping, and CD4(+) T-cell counts and viral load measurements were determined prior to antiretroviral therapy initiation. The association of TLR haplotypes with viral load and rapid progression was assessed by multivariate regression models using age and sex as covariates. RESULTS: Two TLR4 SNPs in strong linkage disequilibrium [1063 A/G (D299G) and 1363 C/T (T399I)] were more frequent among individuals with high peak viral load compared with low/moderate peak viral load (odds ratio 6.65, 95% confidence interval 2.19-20.46, P < 0.001; adjusted P = 0.002 for 1063 A/G). In addition, a TLR9 SNP previously associated with slow progression was found less frequently among individuals with high viral setpoint compared with low/moderate setpoint (odds ratio 0.29, 95% confidence interval 0.13-0.65, P = 0.003, adjusted P = 0.04). CONCLUSION: This study suggests a potentially new role for TLR4 polymorphisms in HIV-1 peak viral load and confirms a role for TLR9 polymorphisms in disease progression.
Resumo:
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.
Resumo:
Twenty per cent of sentinel lymph node (SLN)-positive melanoma patients have positive non-SLN lymph nodes in completion lymph node dissection (CLND). We investigated SLN tumour load, non-sentinel positivity and disease-free survival (DFS) to assess whether certain patients could be spared CLND. Sentinel lymph node biopsy was performed on 392 patients between 1999 and 2005. Median observation period was 38.8 months. Sentinel lymph node tumour load did not predict non-SLN positivity: 30.8% of patients with SLN macrometastases (> or =2 mm) and 16.4% with micrometastases (< or =2 mm) had non-SLN positivity (P=0.09). Tumour recurrences after positive SLNs were more than twice as frequent for SLN macrometastases (51.3%) than for micrometastases (24.6%) (P=0.005). For patients with SLN micrometastases, the DFS analysis was worse (P=0.003) when comparing those with positive non-SLNs (60% recurrences) to those without (17.6% recurrences). This difference did not translate into significant differences in DFS: patients with SLN micrometastasis, either with (P=0.022) or without additional positive non-SLNs (P<0.0001), fared worse than patients with tumour-free SLNs. The 2-mm cutoff for SLN tumour load accurately predicts differences in DFS. Non-SLN positivity in CLND, however, cannot be predicted. Therefore, contrary to other studies, no recommendations concerning discontinuation of CLND based on SLN tumour load can be deduced.
Resumo:
Studies of species range determinants have traditionally focused on abiotic variables (typically climatic conditions), and therefore the recent explicit consideration of biotic interactions represents an important advance in the field. While these studies clearly support the role of biotic interactions in shaping species distributions, most examine only the influence of a single species and/or a single interaction, failing to account for species being subject to multiple concurrent interactions. By fitting species distribution models (SDMs), we examine the influence of multiple vertical (i.e., grazing, trampling, and manuring by mammalian herbivores) and horizontal (i.e., competition and facilitation; estimated from the cover of dominant plant species) interspecific interactions on the occurrence and cover of 41 alpine tundra plant species. Adding plant-plant interactions to baseline SDMs (using five field-quantified abiotic variables) significantly improved models' predictive power for independent data, while herbivore-related variables had only a weak influence. Overall, abiotic variables had the strongest individual contributions to the distribution of alpine tundra plants, with the importance of horizontal interaction variables exceeding that of vertical interaction variables. These results were consistent across three modeling techniques, for both species occurrence and cover, demonstrating the pattern to be robust. Thus, the explicit consideration of multiple biotic interactions reveals that plant-plant interactions exert control over the fine-scale distribution of vascular species that is comparable to abiotic drivers and considerably stronger than herbivores in this low-energy system.
Resumo:
OBJECTIVES: Renal tubular sodium handling was measured in healthy subjects submitted to acute and chronic salt-repletion/salt-depletion protocols. The goal was to compare the changes in proximal and distal sodium handling induced by the two procedures using the lithium clearance technique. METHODS: In nine subjects, acute salt loading was obtained with a 2 h infusion of isotonic saline, and salt depletion was induced with a low-salt diet and furosemide. In the chronic protocol, 15 subjects randomly received a low-, a regular- and a high-sodium diet for 1 week. In both protocols, renal and systemic haemodynamics and urinary electrolyte excretion were measured after an acute water load. In the chronic study, sodium handling was also determined, based on 12 h day- and night-time urine collections. RESULTS: The acute and chronic protocols induced comparable changes in sodium excretion, renal haemodynamics and hormonal responses. Yet, the relative contribution of the proximal and distal nephrons to sodium excretion in response to salt loading and depletion differed in the two protocols. Acutely, subjects appeared to regulate sodium balance mainly by the distal nephron, with little contribution of the proximal tubule. In contrast, in the chronic protocol, changes in sodium reabsorption could be measured both in the proximal and distal nephrons. Acute water loading was an important confounding factor which increased sodium excretion by reducing proximal sodium reabsorption. This interference of water was particularly marked in salt-depleted subjects. CONCLUSION: Acute and chronic salt loading/salt depletion protocols investigate different renal mechanisms of control of sodium balance. The endogenous lithium clearance technique is a reliable method to assess proximal sodium reabsorption in humans. However, to investigate sodium handling in diseases such as hypertension, lithium should be measured preferably on 24 h or overnight urine collections to avoid the confounding influence of water.
Resumo:
There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.
Resumo:
OBJECTIVE: To determine whether infusion line compliance contributes to irregular drug delivery during vertical displacement of syringe pumps. DESIGN: Five different commercially available infusion lines were studied at infusion rates of 0.5, 1.0, and 1.5 ml/h. Zero drug delivery time was measured after acute line loop formation (70 cm) using an electronic balance. Compliance of each infusion line was calculated using a pressure transducer and measurement of the occlusion release bolus at 300 mmHg occlusion pressure. Finally, the influence of infusion line compliance on drug delivery during acute lowering of the syringe pump was studied using low- and high-compliance infusion lines. RESULTS: Acute line loop formation resulted in zero drug delivery time from 5.1 +/- 1.5 to 44.0 +/- 6.8 s at flow rates of 0.5 ml/h. Increased flow rates significantly reduced loop-induced flow variability. A close correlation was found between zero drug delivery time and calculated infusion line compliance at 0.5 ml/h (linear regression R2 = 0.79). Lowering of the syringe pump 50 cm prolonged zero drug delivery time from 295.8 +/- 20.7 s with the low-compliance tube to 463.3 +/- 24.0 s with the high-compliance infusion line. CONCLUSIONS: Infusion line compliance contributes to irregular drug delivery associated with vertical displacement of syringe pumps. Siphoning of the infusion line during patient care should be avoided, and flow rates of 1 ml/h or higher are recommended. Low-compliance infusion lines are indicated whenever highly short-acting vasoactive drugs at low delivery rates are administered.
Resumo:
A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn's disease, suggesting a broader influence of HLA expression levels in human disease.
Resumo:
Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipulated by asking subjects to memorize the spatial locations of 6 or 3 disks. The grid was always presented between the encoding and recognition of the disk pattern. As a baseline condition, grid stimuli were presented without a VSWM context. VSWM load altered both perceptual performance and neural networks active during intervening grid encoding. Participants performed faster and more accurately on a challenging perceptual task under high VSWM load as compared to the low load and the baseline condition. Visual evoked potential (VEP) analyses identified changes in the configuration of the underlying sources in one particular period occurring 160-190 ms post-stimulus onset. Source analyses further showed an occipito-parietal down-regulation concurrent to the increased involvement of temporal and frontal resources in the high VSWM context. Together, these data suggest that cognitive control mechanisms supporting working memory may selectively enhance concurrent visual processing related to an independent goal. More broadly, our findings are in line with theoretical models implicating the engagement of frontal regions in synchronizing and optimizing mnemonic and perceptual resources towards multiple goals.
Resumo:
Guex, KJ, Lugrin, V, Borloz, S, and Millet, GP. Influence on strength and flexibility of a swing phase-specific hamstring eccentric program in sprinters' general preparation. J Strength Cond Res 30(2): 525-532, 2016-Hamstring injuries are common in sprinters and mainly occur during the terminal swing phase. Eccentric training has been shown to reduce hamstring injury rate by improving several risk factors. The aim of this study was to test the hypothesis that an additional swing phase-specific hamstring eccentric training in well-trained sprinters performed at the commencement of the winter preparation is more efficient to improve strength, ratio, optimum angle, and flexibility than a similar program without hamstring eccentric exercises. Twenty sprinters were randomly allocated to an eccentric (n = 10) or a control group (n = 10). Both groups performed their usual track and field training throughout the study period. Sprinters in the eccentric group performed an additional 6-week hamstring eccentric program, which was specific to the swing phase of the running cycle (eccentric high-load open-chain kinetic movements covering the whole hamstring length-tension relationship preformed at slow to moderate velocity). Isokinetic and flexibility measurements were performed before and after the intervention. The eccentric group increased hamstring peak torques in concentric at 60 degrees .s by 16% (p < 0.001) and at 240 degrees .s by 10% (p < 0.01), in eccentric at 30 degrees .s by 20% (p < 0.001) and at 120 degrees .s by 22% (p < 0.001), conventional and functional ratios by 12% (p < 0.001), and flexibility by 4 degrees (p < 0.01), whereas the control group increased hamstring peak torques only in eccentric at 30 degrees .s by 6% (p </= 0.05) and at 120 degrees .s by 6% (p < 0.01). It was concluded that an additional swing phase-specific hamstring eccentric training in sprinters seems to be crucial to address different risk factors for hamstring strain injuries, such as eccentric and concentric strength, hamstring-to-quadriceps ratio ratio, and flexibility.