2 resultados para Veleia (Iruña, Álava)
em Université de Lausanne, Switzerland
Resumo:
Two Paleogene ocean islands are exposed in the Azuero Peninsula, west Panama, within sequences accreted in the early-Middle Eocene. A multidisciplinary approach involving litho-logic mapping, paleontological age determinations, and petrological study allows reconstruction of the stratigraphy and magmatic evolution of one of these intraplate oceanic volcanoes. From base to top, the volcano's structure comprises submarine basaltic lava flows locally interlayered with hemipelagic sediments, basaltic breccias, shallow-water limestones, and subaerial basaltic lava. Gabbros and basaltic dikes were emplaced along a rift zone of the island. Geochemical trends of basaltic lavas include decreased Mg# {[Mg/(Mg + Fe)] * 100} and, with time, increased incompatible element contents thought to be representative of many poorly documented intraplate volcanoes in the Pacific. Our results show that, in addition to deep drilling, the roots of oceanic islands can be explored through studies of accreted and subaerially exhumed oceanic sequences.
Resumo:
In the southwestern part of the Aiguilles Rouges massif (pre-Alpine basement of the Helvetic realm, western Alps), a metavolcanic sequence, newly defined as the ``Greenstone Unit'',is exposed in two NS trending belts of several 100 metres in thickness. It consists of epidote amphibolites, partly epidote and/or calcic amphibole-bearing greenschists, and small amounts of alkali feldspar-bearing greenschists, which underwent low- to medium-grade metamorphism during Visean oblique collision. Metamorphic calcic amphiboles and epidotes show strong chemical zoning, whereas metamorphic plagioclase is exclusively albitic in composition (An 1-3). The SiO2 content of the subalkaline tholeiitic to calc-alkaline suite ranges continuously from 44 wt% to 73 wt%,but andesitic rocks predominate. The majority of samples have chemical compositions close to recent subduction-related lavas; some are even restricted to recent oceanic arcs (extremely low Ta and Nb contents, high La/Nb and Th/Ta ratios). But several basaltic to basalto-andesitic samples resemble continental tholeiites (low Th/Ta, La/Nb ratio). As it is very probable that both lava types are to some extent contemporaneous, it is proposed that the Greenstone Unit represents a former oceanic volcanic are which temporarily underwent extension during which emplacement of continental tholeiite-like rocks occurred. The cause of the extension remains ambiguous. Considering palaeotectonic significance and age of other metavolcanic units in the Aiguilles Rouges massif, the Greenstone Unit most likely formed in the Early Palaeozoic.