6 resultados para Vascular hyporeactivity

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies in humans have demonstrated a relationship between pathological events during fetal development and increased cardiovascular risk later in life and have led to the so called "Fetal programming of cardiovascular disease hypothesis". The recent observation of generalised vascular dysfunction in young apparently healthy children conceived by assisted reproductive technologies (ART) provides a novel and potentially very important example of this hypothesis. This review summarises recent data in ART children demonstrating premature subclinical atherosclerosis in the systemic circulation and pulmonary vascular dysfunction predisposing to exaggerated hypoxia-induced pulmonary hypertension. These problems appear to be related to the ART procedure per se. Studies in ART mice demonstrating premature vascular aging and arterial hypertension further demonstrate the potential of ART to increase cardiovascular risk and have allowed to unravel epigenetic alterations of the eNOS gene as an underpinning mechanism. The roughly 25% shortening of the life span in ART mice challenged with a western style high-fat-diet demonstrates the potential importance of these alterations for the long-term outcome. Given the young age of the ART population, data on cardiovascular endpoints will not be available before 20 to 30 years from now. However, already now cohort studies of the ART population are needed to early detect cardiovascular alterations with the aim to prevent or at least optimally treat cardiovascular complications. Finally, a debate needs to be engaged on the future of ART and the consequences of its exponential growth for public health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Most of the neuropathological studies in brain aging were based on the assumption of a symmetrical right-left hemisphere distribution of both Alzheimer disease and vascular pathology. To explore the impact of asymmetrical lesion formation on cognition, we performed a clinicopathological analysis of 153 cases with mixed pathology except macroinfarcts. METHODS: Cognitive status was assessed prospectively using the Clinical Dementia Rating scale; neuropathological evaluation included assessment of Braak neurofibrillary tangle and Ass deposition staging, microvascular pathology, and lacunes. The right-left hemisphere differences in neuropathological scores were evaluated using the Wilcoxon signed rank test. The relationship between the interhemispheric distribution of lesions and Clinical Dementia Rating scores was assessed using ordered logistic regression. RESULTS: Unlike Braak neurofibrillary tangle and Ass deposition staging, vascular scores were significantly higher in the left hemisphere for all Clinical Dementia Rating scores. A negative relationship was found between Braak neurofibrillary tangle, but not Ass staging, and vascular scores in cases with moderate to severe dementia. In both hemispheres, Braak neurofibrillary tangle staging was the main determinant of cognitive decline followed by vascular scores and Ass deposition staging. The concomitant predominance of Alzheimer disease and vascular pathology in the right hemisphere was associated with significantly higher Clinical Dementia Rating scores. CONCLUSIONS: Our data show that the cognitive impact of Alzheimer disease and vascular lesions in mixed cases may be assessed unilaterally without major information loss. However, interhemispheric differences and, in particular, increased vascular and Alzheimer disease burden in the right hemisphere may increase the risk for dementia in this group.