151 resultados para Variable structures
em Université de Lausanne, Switzerland
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The high density of slope failures in western Norway is due to the steep relief and to the concentration of various structures that followed protracted ductile and brittle tectonics. On the 72 investigated rock slope instabilities, 13 were developed in soft weathered mafic and phyllitic allochthons. Only the intrinsic weakness of such rocks increases the susceptibility to gravitational deformation. In contrast, the gravitational structures in the hard gneisses reactivate prominent ductile or/and brittle fabrics. At 30 rockslides along cataclinal slopes, weak mafic layers of foliation are reactivated as basal planes. Slope-parallel steep foliation forms back-cracks of unstable columns. Folds are specifically present in the Storfjord area, together with a clustering of potential slope failures. Folding increases the probability of having favourably orientated planes with respect to the gravitational forces and the slope. High water pressure is believed to seasonally build up along the shallow-dipping Caledonian detachments and may contribute to destabilization of the rock slope upwards. Regional cataclastic faults localized the gravitational structures at 45 sites. The volume of the slope instabilities tends to increase with the amount of reactivated prominent structures and the spacing of the latter controls the size of instabilities.
Resumo:
Fractal geometry is a fundamental approach for describing the complex irregularities of the spatial structure of point patterns. The present research characterizes the spatial structure of the Swiss population distribution in the three Swiss geographical regions (Alps, Plateau and Jura) and at the entire country level. These analyses were carried out using fractal and multifractal measures for point patterns, which enabled the estimation of the spatial degree of clustering of a distribution at different scales. The Swiss population dataset is presented on a grid of points and thus it can be modelled as a "point process" where each point is characterized by its spatial location (geometrical support) and a number of inhabitants (measured variable). The fractal characterization was performed by means of the box-counting dimension and the multifractal analysis was conducted through the Renyi's generalized dimensions and the multifractal spectrum. Results showed that the four population patterns are all multifractals and present different clustering behaviours. Applying multifractal and fractal methods at different geographical regions and at different scales allowed us to quantify and describe the dissimilarities between the four structures and their underlying processes. This paper is the first Swiss geodemographic study applying multifractal methods using high resolution data.
Resumo:
The 30 M m3 rockslide that occurred on the east face of Turtle Mountain in the Crowsnest Pass area (Alberta) in 1903 is one of the most famous landslides in the world. In this paper, the structural features of the South part of Turtle Mountain are investigated in order to understand the present-day scar morphology and to identify the most important failure mechanisms. The structural features were mapped using a high resolution digital elevation model (DEM) in order to have a large overview of the relevant structural features. At the same time, a field survey was carried out and small scale fractures were analyzed in different parts of southern Turtle Mountain in order to confirm the DEM analysis. Results allow to identify six main discontinuity sets that influence the Turtle Mountain morphology. These discontinuity sets were then used to identify the potential failure mechanisms affecting Third Peak and South Peak area.
Resumo:
The deep-sea sponge Monorhaphis chuni forms giant basal spicules, which can reach lengths of 3 m; they represent the largest biogenic silica structures on Earth that is formed from an individual metazoan. The spicules offer a unique opportunity to record environmental change of past oceanic and climatic conditions. A giant spicule collected in the East China Sea in a depth of 1110 m was investigated. The oxygen isotopic composition and Mg/Ca ratios determined along center-to-surface segments are used as geochemical proxies for the assessment of seawater paleotemperatures. Calculations are based on the assumption that the calculated temperature near the surface of the spicule is identical with the average ambient temperature of 4 degrees C. A seawater temperature of 1.9 degrees C is inferred for the beginning of the lifespan of the Monorhaphis specimen. The temperature increases smoothly to 2.3 degrees C, to be followed by sharply increased and variable temperatures up to 6-10 degrees C. In the outer part of the spicule, the inferred seawater temperature is about 4 degrees C. The lifespan of the spicule can be estimated to 11,000 +/- 3000 years using the long-term trend of the inferred temperatures fitted to the seawater temperature age relationships since the Last Glacial Maximum. Specimens of Monorhaphis therefore represents one the oldest living animals on Earth. The remarkable temperature spikes of the ambient seawater occurring 9500-3100 years B.P. are explained by discharges of hydrothermal fluids in the neighborhood of the spicule. The irregular lamellar organization of the spicule and the elevated Mn concentrations during the high-temperature growth are consistent with a hydrothermal fluid input. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
ABSTRACT: BACKGROUND: Valganciclovir, the oral prodrug of ganciclovir, has been demonstrated equivalent to iv ganciclovir for CMV disease treatment in solid organ transplant recipients. Variability in ganciclovir exposure achieved with valganciclovir could be implicated as a contributing factor for explaining variations in the therapeutic response. This prospective observational study aimed to correlate clinical and cytomegalovirus (CMV) viral load response (DNAemia) with ganciclovir plasma concentrations in patients treated with valganciclovir for CMV infection/disease. METHODS: Seven CMV D+/R- transplant recipients (4 kidney, 2 liver and 1 heart) were treated with valganciclovir (initial dose was 900-1800 mg/day for 3-6.5 weeks, followed by 450-900 mg/day for 2-9 weeks). DNAemia was monitored by real time quantitative PCR and ganciclovir plasma concentration was measured at trough (Ctrough) and 3 h after drug administration (C3h) by HPLC. RESULTS: Four patients presented with CMV syndrome, two had CMV tissue-invasive disease after prophylaxis discontinuation, and one liver recipient was treated pre-emptively for asymptomatic rising CMV viral load 5 weeks post-transplantation in the absence of prophylaxis. CMV DNAemia decreased during the first week of treatment in all recipients except in one patient (median decrease: -1.2 log copies/mL, range: -1.8 to 0) despite satisfactory ganciclovir exposure (AUC0-12 = 48 mg.h/L, range for the 7 patients: 40-118 mg.h/L). Viral clearance was obtained in five patients after a median of time of 34 days (range: 28-82 days). Two patients had recurrent CMV disease despite adequate ganciclovir exposure (65 mg.h/L, range: 44-118 mg.h/L). CONCLUSIONS: Valganciclovir treatment for CMV infection/disease in D+/R- transplant recipients can thus result in variable viral clearance despite adequate ganciclovir plasma concentrations, probably correlating inversely with anti-CMV immune responses after primary infection.
Resumo:
Reticulitermes santonensis is a subterranean termite that invades urban areas in France and elsewhere where it causes damage to human-built structures. We investigated the breeding system, colony and population genetic structure, and mode of dispersal of two French populations of R. santonensis. Termite workers were sampled from 43 and 31 collection points, respectively, from a natural population in west-central France (in and around the island of Oleron) and an urban population (Paris). Ten to 20 workers per collection point were genotyped at nine variable microsatellite loci to determine colony identity and to infer colony breeding structure. There was a total of 26 colonies, some of which were spatially expansive, extending up to 320 linear metres. Altogether, the analysis of genotype distribution, F-statistics and relatedness coefficients suggested that all colonies were extended families headed by numerous neotenics (nonwinged precocious reproductives) probably descended from pairs of primary (winged) reproductives. Isolation by distance among collection points within two large colonies from both populations suggested spatially separated reproductive centres with restricted movement of workers and neotenics. There was a moderate level of genetic differentiation (F(ST) = 0.10) between the Oleron and Paris populations, and the number of alleles was significantly higher in Oleron than in Paris, as expected if the Paris population went through bottlenecks when it was introduced from western France. We hypothesize that the diverse and flexible breeding systems found in subterranean termites pre-adapt them to invade new or marginal habitats. Considering that R. santonensis may be an introduced population of the North American species R. flavipes, a breeding system consisting primarily of extended family colonies containing many neotenic reproductives may facilitate human-mediated spread and establishment of R. santonensis in urban areas with harsh climates.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
Purpose:to describe the clinical features in a five generations family segregating autosomal dominant retinitis pigmentosa and to identify the causative gene Patient and Methods:Twenty five individuals of a large five-generation family originating from Western Switzerland were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldman perimetry and digital fundus photography. Some patients had autofluorescence (AF) imaging, ocular coherence tomography (OCT) and ISCEV-standard full-field electroretinography (ERG). Blood samples were collected from 10 affected (4 to 70 years of age) and 15 unaffected members after informed consent. DNA was isolated and exons and intron-exons junctions of known adRP genes were sequenced using a Big Dye sequencing kit 1.1. Results:Age of onset of nightblindness and severity of progression of the disease was variable between members of the family. Some patients had early onset of nightblindess aged 3, others at mid-twenties. Most patients had visual acuity above 0.6 for the first 4 decades. Two older patients still had good vision (0.4) in their seventies. Myopia (range: -2 to -5) was noticed in most affected subjects. Fundus findings showed areas of atrophy along the arcades. The AF imaging showed a large high density ring bilaterally. A T494M change was found in exon 11 of PRPF3 gene. The change segregates with the disease in the family. Conclusion: A mutation in the PRPF3 gene is rare compared with other genes causing ADRP. Although a T494M change has been reported, our family is the first one with a variable expressivity. Mutations in PRPF3 gene can cause a variable phenotype of ADRP unlike the previously described Danish and English families. Our report gives a better understanding as to the phenotype/genotype description of ADRP due to PRPF3 mutation.