38 resultados para Valvoplastia mitral percutânea por balão
em Université de Lausanne, Switzerland
Resumo:
Objectif: La réparation de la valve mitrale constitue le traitement de choix pour restaurer ta fonction de celle-ci. Elle est actuellement reconnue pour garantir une bonne évolution à long terme. Dans le but de faciliter les décisions périopératoires, nous avons analysé nos patients afin de déterminer les facteurs de risque ayant affecté leur évolution. Méthodes: Nous avons étudié rétrospectivement 175 premiers patients consécutifs (âge moyen : 64 +/-10.4 ans ;113 hommes) qui ont subi une réparation primaire de la valve mitrale associée à toute autre intervention cardiaque entre 1986 et 1998. Les facteurs de risque influençant le taux de réopération et la survie à long terme ont été analysés de manière uni et multivariée. Résultats: La mortalité opératoire était de 3.4 % (6 décès, 0 -22 et jours post-opératoires). La mortalité tardive était de 9.1 % (16 décès, 3e-125e mois post-opératoires). Cinq patients ont dû être réopérés. L'analyse actuarielle selon Kaplan-Meier a montré une survie à 1 année de 96 +l-1 %, une survie à 5 ans de 88 +/- 3 % et une survie à 10 ans de 69 +/- 8 %. Après 1 année, la fraction de population sans réopération était de 99 %, elle était de 97 +/-2 % après 5 ans et de 88+/-6 % après 10 ans. L'analyse multivariée a montré qu' un stade NYHA III et IV résiduel ( p=0.001, RR 4.55, 95 % IC :1.85 -14.29), une mauvaise fraction d'éjection préopératoire(p=0.013, RR 1.09, 95 % IC 1.02 -1.18), ,une régurgitation mitrale d'origine fonctionnelle (p=0.018, RR 4.17, 95% IC 1.32-16.67) ainsi qu'une étiologie ischémique (p=0.049, RR 3.13, 95% IC 1.01-10.0) constituaient tous des prédicteurs indépendant de mortalité. Une régurgitation mitrale persistante au 7 e jour post-opératoire (p= 0.005, RR 4.55, 95 % IC :1.56 -20.0), un âge inférieur à 60 ans (p = 0.012, RR 8.7, 95 % IC 2.44 - 37.8) et l'absence d'anneau prothétique (p = 0.034, RR 4.76, 95 % IC 1.79-33.3) se sont tous révélés être des facteurs de risque indépendant de réopération. Conclusion: Les réparations mitrales sont accompagnées d'une excellente survie à long terme même si leur évolution peut être influencée négativement par de nombreux facteurs de risques periopératoires. Les risques de réopération sont plus élevés chez des patients jeunes présentant une régurgitation mitrale résiduelle et n'ayant pas bénéficié de la mise en place d'un anneau prothétique.
Resumo:
OBJECTIVES: Residual mitral regurgitation after valve repair worsens patients' clinical outcome. Postimplant adjustable mitral rings potentially address this issue, allowing the reshaping of the annulus on the beating heart under echocardiography control. We developed an original mitral ring allowing valve geometry remodelling after the implantation and designed an animal study to assess device effectiveness in correcting residual mitral regurgitation. METHODS: The device consists of two concentric rings: one internal and flexible, sutured to the mitral annulus and a second external and rigid. A third conic element slides between the two rings, modifying the shape of the flexible ring. This sliding element is remotely activated with a rotating tool. Animal model: in adult swine, under cardio pulmonary bypass and cardiac arrest, we shortened the primary chordae of P2 segment to reproduce Type III regurgitation and implanted the active ring. We used intracardiac ultrasound to assess mitral regurgitation and the efficacy of the active ring to correct it. RESULTS: Severe mitral regurgitation (3+ and 4+) was induced in eight animals, 54 ± 6 kg in weight. Vena contracta width decreased from 0.8 ± 0.2 to 0.1 cm; proximal isovelocity surface area radius decreased from 0.8 ± 0.2 to 0.1 cm and effective regurgitant orifice area decreased from 0.50 ± 0.1 to 0.1 ± 0.1 cm(2). Six animals had a reversal of systolic pulmonary flow that normalized following the activation of the device. All corrections were reversible. CONCLUSIONS: Postimplant adjustable mitral ring corrects severe mitral regurgitation through the reversible modification of the annulus geometry on the beating heart. It addresses the frequent and morbid issue of recurrent mitral valve regurgitation.
Resumo:
Mitral valve injury after blunt chest trauma is a rare occurrence. We recently admitted a patient with severe traumatic mitral regurgitation who was successfully treated with surgery. Review of the literature aimed at taking an inventory of cases of traumatic nonpenetrating mitral insufficiency that were operated on, since the earliest report in 1964. Eighty-two cases were found and analyzed allowing for a better understanding of the epidemiology, etiology, natural history, pathology, and treatment of this rare condition. The most common lesions reach the papillary muscles (PM), followed by the chordae and then the mitral valve leaflets. Among the 82 cases reported that have been treated with surgery, 57% required a valve replacement. More than half of the patients had a PM injury with a complete or partial rupture. When the rupture is complete, and especially when it involves the anterior PM, the clinical picture is most always acute with clinically important hemodynamic repercussions, often necessitating emergency surgery, most of the time with mitral valve replacement. One must always suspect traumatic mitral injury after blunt chest trauma. The most common mitral lesions affect the PM. The clinical course can be indolent or devastating, and most often requires urgent or delayed surgical treatment, either with mitral valve repair or replacement.
Resumo:
To date, myxoma on a mechanical valve annulus has not been reported. The case is reported of a 74-year-old woman who was admitted to hospital following the identification of an intracardiac tumor mass. Six years previously, the patient had received a mechanical valve implanted in the mitral position. Transesophageal echocardiography revealed a mobile hypoechogenic tumorous mass attached to the anterior annulus of the prosthesis. The tumor was successfully treated by surgical excision, and a diagnosis of myxoma was confirmed both clinically and pathologically.
Resumo:
Mitral regurgitation (MR) involves systolic retrograde flow from the left ventricle into the left atrium. While trivial MR is frequent in healthy subjects, moderate to severe MR constitutes the second most prevalent valve disease after aortic valve stenosis. Major causes of severe MR in Western countries include degenerative valve disease (myxomatous disease, flail leaflet, annular calcification) and ischaemic heart disease, while rheumatic disease remains a major cause of MR in developing countries. Chronic MR typically progresses insidiously over many years. Once established, however, severe MR portends a poor prognosis. The severity of MR can be assessed by various techniques, Doppler echocardiography being the most widely used. Mitral valve surgery is the only treatment of proven efficacy. It alleviates clinical symptoms and prevents ventricular dilatation and heart failure (or, at least, it attenuates further progression of these abnormalities). Valve repair significantly improves clinical outcomes compared with valve replacement, reducing mortality by approximately 70%. Reverse LV remodelling after valve repair occurs in half of patients with functional MR. Percutaneous, catheter-based to mitral valve repair is a novel approach currently under clinical scrutiny, with encouraging preliminary results. This modality may provide a valuable alternative to mitral valve surgery, especially in critically ill patients.
Resumo:
An unusual case of localized amyloid light-chain (AL) amyloidosis and extramedullary plasmacytoma of the mitral valve is described. The worsening of a mitral regurgitation led to investigations and surgery. The valve presented marked distortion and thickening by type AL amyloid associated with a monotypic CD138+ immunoglobulin lambda plasma cell proliferation. Systemic staging showed a normal bone marrow and no evidence of amyloid deposition in other localizations. The patient's outcome after mitral valve replacement was excellent. To our knowledge, this is the first description of a localized AL amyloidosis as well as of a primary extramedullary plasmacytoma of the mitral valve.
Resumo:
OBJECTIVES: The study aimed to evaluate the feasibility of off-pump transapical mitral valve-in-ring implantation and to test the performance of a custom-made self-expandable stent valve, in comparison with the standard SAPIEN valve. METHODS: Acute experiments were performed in five pigs. Animals (mean weight 58.4 ± 7.3 kg) underwent mitral valve annuloplasties under cardiopulmonary bypass using 26-mm rings (SJM?). Then, a 30-mm custom-made self-expandable stent valve or a 23-mm balloon-expandable transcatheter heart valve (Edwards SAPIEN XT?) was deployed within the annuloplasty rings through a transatrial access and under direct vision. Subsequently, the stent valves were inserted transapically under fluoroscopic guidance and off pump. RESULTS: The procedural success of transatrial and transapical mitral valve-in-ring procedures was 100% (10 of 10). Mean transatrial and transapical procedure time was 2.0 ± 1.1 and 22.0 ± 5.7 min, respectively. Haemodynamic status during transapical implantation remained stable, and differences in data collected before and after the stent-valve deployment were not statistically significant. Mean mitral annulus diameter and mean mitral orifice area in the group of self-expandable stent valves were 2.60 ± 0.02 cm and 4.16 ± 0.48 cm(2), respectively, whereas in the SAPIEN group they were 1.95 ± 0.18 cm and 2.26 ± 0.20 cm(2), respectively. Trace or mild regurgitation was detected only in the self-expandable stent-valve group. Mean gradients were 4.1 ± 4.5 mmHg across the self-expandable stent valves and 1.0 ± 0 mmHg across the SAPIEN valves. Postmortem examination confirmed adequate positioning of the self-expandable valves and the SAPIEN valves within the annuloplasty ring. CONCLUSIONS: Off-pump transapical mitral valve-in-ring implantation is safe and feasible. Transapical access may represent the ideal option for valve-in-ring procedures in cases of recurrent mitral regurgitation after mitral valve repair, in high-risk patients. Owing to the supra-annular profile of the valve components, our custom-made nitinol stent valve provides nearer to normal functional area than the SAPIEN valve.
Resumo:
In some high-risk patients, standard mitral valve replacement can represent a challenging procedure, requiring a risky extensive decalcification of the annulus. In particular, high-risk redo patients and patients with a previously implanted transcatheter aortic valve, who develop calcific mitral disease, would benefit from the development of new, minimally invasive, transcatheter or hybrid techniques for mitral valve replacement. In particular, mixing transcatheter valve therapies and well-established minimally invasive techniques for mitral replacement or repair can help in decreasing the surgical risk and the technical complexity. Thus, placing transcatheter, balloon-expandable Sapien? XT stent-valves in calcified, degenerated mitral valves through a right thoracotomy, a left atriotomy and on an on-pump fibrillating heart, represents an attractive alternative to standard surgery in redo patients, in patients with concomitant transcatheter aortic stent-valves in place and in patients with a high-risk profile. We describe this hybrid technique in detail.
Resumo:
We report a case of neonatal lupus erythematosus (NLE) with congenital heart block and severe myocardial failure, which was followed from the 25th week of gestation because of fetal bradycardia. The child was delivered at the 37th week of gestation by elective cesarean section because of echocardiographically documented heart enlargement, pericardial effusion and moderate insufficiency of the mitral and tricuspid valves. In spite of immediate pacing, intubation and supportive treatment, the newborn developed progressive heart failure. Echocardiography showed endocarditis of the mitral valve and diffuse myocarditis. The heart failure resolved under steroid treatment. Our experience supports the early use of steroids in treating myocarditis due to NLE. Intrauterine steroid treatment in the presence of fetal hydrops and congenital heart block is discussed.
Resumo:
INTRODUCTION: Mitral isthmus (MI) ablation is an effective option in patients undergoing ablation for persistent atrial fibrillation (AF). Achieving bidirectional conduction block across the MI is challenging, and predictors of MI ablation success remain incompletely understood. We sought to determine the impact of anatomical location of the ablation line on the efficacy of MI ablation. METHODS AND RESULTS: A total of 40 consecutive patients (87% male; 54 ± 10 years) undergoing stepwise AF ablation were included. MI ablation was performed in sinus rhythm. MI ablation was performed from the left inferior PV to either the posterior (group 1) or the anterolateral (group 2) mitral annulus depending on randomization. The length of the MI line (measured with the 3D mapping system) and the amplitude of the EGMs at 3 positions on the MI were measured in each patient. MI block was achieved in 14/19 (74%) patients in group 1 and 15/21 (71%) patients in group 2 (P = NS). Total MI radiofrequency time (18 ± 7 min vs. 17 ± 8 min; P = NS) was similar between groups. Patients with incomplete MI block had a longer MI length (34 ± 6 mm vs. 24 ± 5 mm; P < 0.001), a higher bipolar voltage along the MI (1.75 ± 0.74 mV vs. 1.05 ± 0.69 mV; P < 0.01), and a longer history of continuous AF (19 ± 17 months vs. 10 ± 10 months; P < 0.05). In multivariate analysis, decreased length of the MI was an independent predictor of successful MI block (OR 1.5; 95% CI 1.1-2.1; P < 0.05). CONCLUSIONS: Increased length but not anatomical location of the MI predicts failure to achieve bidirectional MI block during ablation of persistent AF.
Resumo:
Case: A 11 yo girl with Marfan syndrome was referred to cardiac MR (CMR) to measure the size of her thoracic aorta. She had a typical phenotype with arachnodactyly, abnormally long arms, and was tall and slim (156 cm, 28 kg, body mass index 11,5 kg/m2). She complained of no symptoms. Cardiac auscultation revealed a prominent mid-systolic click and an end-systolic murmur at the apex. A recent echocardiogram showed a moderately dilated left ventricle with normal function and a mitral valve prolapse with moderate mitral valve regurgitation. CMR showed a dilatation of the aortic root (38 mm, Z-score 8.9) and a severe prolapse of the mitral valve with regurgitation. The ventricular cavity was moderately dilated (116 ml/m2) and its contraction was hyperdynamic (stroke volume (SV): 97 ml; LVEF 72%, with the LV volumes measured by modified Simpson method from the apex to the mitral annulus). In this patient however, the mitral prolapse was characterized by a severe backward movement of the valve toward the left atrium (LA) in systole and the dyskinetic movement of the atrioventricular plane caused a ventricularisation of a part of the LA in systole (Figure). This resulted in a significant reduction of LVEF: more than ¼ of the apparent SV was displaced backwards into the ventricularized LA volume, reducing the effective LVEF to 51% (effective SV 69ml). Moreover, by flow measurement, the SV across the ascending aorta was 30 ml (cardiac index 2.0 l/min/m2) allowing the calculation of a regurgitant fraction across the mitral valve of 56%, which was diagnostic for a severe mitral valve insufficiency. Conclusion: This case illustrates the phenomenon of a ventricularisation of the LA where the severe prolapse gives the illusion of a higher attachement of the mitral leaflets within the atrial wall. Besides the severe mitral regurgitation, this paradoxical backwards movement of the valve causes an intraventricular unloading during systole reducing the apparent LVEF of 72% to an effective LVEF of only 51%. In addition, forward flow fraction is only 22% after accounting for the regurgitant volume, as well. This combined involvement of the mitral valve could explain the discrepancy between a low output state and an apparently hyperdynamic LV contraction. Due to its ability to precisely measure flows and volumes, CMR is particularly suited to detect this phenomenon and to quantify its impact on the LV pump function.