3 resultados para VISUAL FUNCTION
em Université de Lausanne, Switzerland
Resumo:
Purpose: C57/Bl6, Cpfl1-/- (Cone photoreceptors function loss 1; pure rod function), Gnat1alpha-/- (rod alpha-transducin; pure cone function) and Rpe65-/-;Rho-/- double knock-out mice were studied in order to distinguish the respective contributions of the different photoreceptor (PR) systems that enable light perception and mediate a visual reflex in adult Rpe65-/- mice using a simple behavioural procedure. Methods: Visual function was estimated using a rotating automatized optomotor drum covered with vertical black and white stripes at spatial frequencies of 0.025 to 0.5 cycles per degree (cpd) in both photopic and scotopic conditions. To evaluate the contribution as well as the light intensity threshold of each PR system, we tested the mouse strains with different luminances. Results: Stripe rotation elicits head movements in wild-type (WT) animals in photopic and scotopic conditions depending on the spatial frequency, whereas Cpfl1-/- mice show a reduced activity in the photopic condition and Gnat1alpha-/- mice an almost absent response in the scotopic condition. Interestingly, a robust visual response is obtained with Rpe65-/- knockout mice at 0.075 cpd and 0.1 cpd in the photopic condition. The residual rod function in the Rpe65-/- animals was demonstrated by testing Rpe65-/-;Rho-/- mice that present no response in photopic conditions. Conclusions: The optomotor test is a simple method to estimate the visual function, and to evaluate the respective contributions of rod and cone systems. Using this test, we demonstrate that in Rpe65-/- mice, devoid of functional cones and of detectable 11-cis-retinal protein, rods mimic in part the cone function by mediating vision in photopic conditions.
Resumo:
Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.
Resumo:
Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.