260 resultados para VASCULAR PATTERN
em Université de Lausanne, Switzerland
Resumo:
Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase COTYLEDON VASCULAR PATTERN 2 (CVP2), but not in its homolog CVP2-LIKE 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, CLAVATA3/EMBRYO SURROUNDING REGION 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture.
Resumo:
Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.
Resumo:
BACKGROUND: In vivo studies demonstrate that the Prox1 transcription factor plays a critical role in the development of the early lymphatic system. Upon Prox1 expression, early lymphatic endothelial cells differentiate from the cardinal vein and begin to express lymphatic markers such as VEGFR-3, LYVE-1 and Podoplanin. Subsequent in vitro studies have found that differentiated vascular endothelial cells can be reprogrammed by Prox1 to express a lymphatic gene profile, suggesting that Prox1 can initiate the expression of a unique gene signature during lymphangiogenesis. While the in vitro data suggest that gene reprogramming occurs upon Prox1 expression, it is not clear if this is a direct result of Prox1 in vascular endothelial cells in vivo. RESULTS: Overexpression of Prox1 in vascular endothelial cells during embryonic development results in the reprogramming of genes to that of a more lymphatic signature. Consequent to this overexpression, embryos suffer from gross edema that results in embryonic lethality at E13.5. Furthermore, hemorrhaging and anemia is apparent along with clear defects in lymph sac development. Alterations in junctional proteins resulting in an increase in vascular permeability upon Prox1 overexpression may contribute to the complications found during embryonic development. CONCLUSION: We present a novel mouse model that addresses the importance of Prox1 in early embryonic lymphangiogenesis. It is clear that there needs to be a measured pattern of expression of Prox1 during embryonic development. Furthermore, Prox1 reprograms vascular endothelial cells in vivo by creating a molecular signature to that of a lymphatic endothelial cell.
Resumo:
BACKGROUND: Clinical studies suggest that transmyocardial laser revascularization may improve regional blood flow of the subendocardial layer. The vascular growth pattern of laser channels was analyzed. METHODS: Twenty pigs were randomized to undergo ligation of left marginal arteries (n = 5), to undergo transmyocardial laser revascularization of the left lateral wall (n = 5), to undergo both procedures (n = 5) or to a control group (n = 5). All the animals were sacrificed after 1 month. Computed morphometric analysis of vascular density of the involved area was expressed as number of vascular structures per square millimeter (+/-1 standard deviation). RESULTS: The vascular density of the scar tissue of the laser channel was significantly increased in comparison with myocardial infarction alone: 49.6+/-12.8/mm2 versus 25.5+/-8.6/mm2 (p < 0.0001). The vascular densities of subendocardial and subepicardial channel areas were similar: 52.9+/-16.8/mm2 versus 46.3+/-13.6/mm2 (p = 0.41). The area immediately adjacent to the channels showed a vascular density similar to that of normal tissue: 6.02+/-1.7/mm2 versus 5.2+/-1.9/mm2 (p = 0.08). In the infarction + transmyocardial laser revascularization group, the channels were indistinguishable from infarction scar. CONCLUSIONS: Scars of transmyocardial laser revascularization channels exhibit an increased vascular density in comparison with scar tissue of myocardial infarction, which does not extend into their immediate vicinity. There was no vascular density gradient along the longitudinal axis of the channels.
Resumo:
AbstractPlants continuously grow during their complete life span and understanding the mechanisms that qualitatively regulate their traits remains a challenging topic in biology. The hormone auxin has been identified as a crucial molecule for shaping plant growth, as it has a role in most developmental processes. In the root, the directional, so-called polar transport of auxin generates a peak of concentration that specifies and maintains the stem cell niche and a subsequent gradient of decreasing concentration that also regulates cell proliferation and differentiation. For these reasons, auxin is considered the main morphogen of the root, as it is fundamental for its organization and maintenance. Recently, in Arabidopsis thaliana, a natural variation screen allowed the discovery of BREVIS RADIX (BRX) gene as a limiting factor for auxin responsive gene expression and thus for root growth.In this study, we discovered that BRX is a direct target of auxin that positively feeds back on auxin signaling, as a transcriptional co-regulator, through interaction with the Auxin Response Factor (ARF) MONOPTEROS (MP), modulating the auxin gene response magnitude during the transition between division and differentiation in the root meristem. Moreover, we provide evidence that BRX is activated at the plasma membrane level as an associated protein before moving into the nucleus to modulate cellular growth.To investigate the discrepancy between the auxin concentration and the expression pattern of its downstream targets, we combined experimental and computational approaches. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and with positive auto- regulatory feedback through plasma- membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response. RésuméLes plantes croissent continuellement tout au long de leur cycle de vie. Comprendre et expliquer les mécanismes impliqués dans ce phénomène reste à l'heure actuelle, un défi. L'hormone auxine a été identifiée comme une molécule essentielle à la régulation de la croissance des plantes, car impliquée dans la plupart des processus développementaux. Dans la racine, le transport polaire de l'auxine, par la génération d'un pic de concentration, spécifie et maintient la niche de cellules souches, et par la génération d'un gradient de concentration, contrôle la prolifération et la différentiation cellulaire. Puisque l'auxine est essentielle pour l'organisation et la maintenance du système racinaire, il est considéré comme son principal morphogène. Récemment, dans la plante modèle, Arabidopsis thalinana, un criblage des variations génétique a permis d'identifier le gène Brevis radix (BRX) comme facteur limitant l'expression des gènes de réponse à l'auxine et par là même, la croissance de la racine.Dans ce travail, nous avons découvert que BRX est une cible direct de l'auxine qui rétroactive positivement le signalement de l'hormone, agissant ainsi comme un régulateur transcriptionnel à travers l'interaction avec la protéine Monopteros (MP) de la famille des facteurs de réponse à l'auxine (Auxin Responsive Factor, ARF), et modulant ainsi la magnitude de la réponse des gènes reliés à l'auxine durant la division et la différentiation cellulaire dans le méristème de la racine. De plus, nous fournissons des preuves que BRX est activées au niveau de la membrane plasmique, tel une protéine associée se déplaçant à l'intérieur du noyau et modulant la croissance cellulaire.Pour mener à bien l'investigation des divergences entre la concentration de l'auxine et les schémas d'expression de ses propres gènes cibles, nous avons combiné les approches expérimentales et computationnelles. Les profiles d'expressions déviant du gradient d'auxine pourraient seulement être modéliser après intersection de l'activité de l'auxine avec les schémas différentiels d'endocytose observés et les boucles de rétroaction positives et autorégulatrices par le transfert de BRX de la membrane plasmique au noyau. Puisque BRX est requis pour l'expression de certains gènes cibles des facteurs de réponse à l'auxine, nos données suggèrent une contribution dépendante d'une endocytose spécifique au type de cellule dans la perception transcriptionnelle à l'auxine Cette contribution soutient l'expression d'un sous-set de gène de réponse à l'auxine dans la division du méristème racinaire et la zone de transition, et par conséquent, est essentielle pour la croissance méristematique. Ainsi, le schéma d'endocytose fournit des informations positionnelles spécifiques à la modulation de la réponse à l'auxine.
Resumo:
Background: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities?Methodology/Principal Findings: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total gamma-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific gamma-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot beta-diversity) and (iv) number of species present per plot (plot gamma-diversity). We found strong region effects on total gamma-diversity, habitat-specific gamma-diversity and plot-to-plot beta-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot alpha-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots.Conclusions/Significance: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges,but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Because different processes can lead to a similar pattern, we discuss the consistency of our results with Quaternary history and other divergent features between the two regions such as habitat connectivity, selection for vagility and environmental differences not accounted for in our analyses
Resumo:
Pancreatic adenocarcinoma is associated with a very poor prognosis, characterized with a 5-year survival rate of only 5%. Surgery is the only curative treatment for selected patients. Nevertheless, recurrence is very frequent. Identifying prognostic factors is thus warranted. Like numerous other tumors, adenocarcinomas are preceded by preneoplastic lesions. The role and the impact of these lesions remain unclear. This study aimed to assess the impact of the preneoplastic lesion pattern and histo-morphological features, on survival after pancreatic resection. Thirty-five patients who underwent pancreatic resection for pancreatic adenocarcinoma were identified from a prospective database of a single center, between 2003 and 2008. We considered demographics, tumor characteristics and type of treatment. The major outcome was survival. Analyzes were separated into two groups, according to the preneoplastic lesions: Pancreatic intraepithelial neoplasia (PanIN)-related carcinomas and intracanalar papillary mucinous neoplasia (IPMN)-related carcinomas. The former were more frequent, accounting for 63% (22/35). Moreover, they displayed more aggressive features, with a higher tumor stage (p = 0.01) and higher rate of positive lymph nodes (p = 0.019). Lymphatic (p = 0.009) and perinervous (p = 0.019) invasions were also more frequent. Survival was negatively influenced by PanIN preneoplastic lesions (p = 0.015), T3-4 tumor stage (p = 0.038), positive lymph nodes (p = 0.044), lymphatic (p = 0.019) and vascular (p = 0.029) invasions. Pancreatic adenocarcinoma displays different behavior according to its preneoplastic lesion. Indeed, PanIN-related adenocarcinoma showed more aggressive features and lower survival rate. Preneoplastic lesions may represent predictive factors for survival. Their role and predictive value should be investigated more thoroughly.
Resumo:
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.
Resumo:
INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.
Resumo:
Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.
Resumo:
Neuropathological and radiological evidences implicating cerebrovascular disease in the pathogenesis of certain types of geriatric depression have led to the relatively recent description of vascular depression, an age-related mood disorder. Its clinical and radiological presentation, the frequent coexistence of cognitive disorders including impairment in executive function and resistance to antidepressant therapy distinguish it from other types of depression. This article presents an overview of the existing literature on the epidemiology, pathophysiology, clinical features and therapeutic particularities of vascular depression. (C) 2010 Elsevier Masson SAS and European Union Geriatric Medicine Society. All rights reserved.
Resumo:
Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32?33 (97%) cancerous biopsies and rejected 17?20 (85%) noncancerous lesions.
Resumo:
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.