74 resultados para User friendly interface
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Knowledge of normal heart weight ranges is important information for pathologists. Comparing the measured heart weight to reference values is one of the key elements used to determine if the heart is pathological, as heart weight increases in many cardiac pathologies. The current reference tables are old and in need of an update. AIMS: The purposes of this study are to establish new reference tables for normal heart weights in the local population and to determine the best predictive factor for normal heart weight. We also aim to provide technical support to calculate the predictive normal heart weight. METHODS: The reference values are based on retrospective analysis of adult Caucasian autopsy cases without any obvious pathology that were collected at the University Centre of Legal Medicine in Lausanne from 2007 to 2011. We selected 288 cases. The mean age was 39.2 years. There were 118 men and 170 women. Regression analyses were performed to assess the relationship of heart weight to body weight, body height, body mass index (BMI) and body surface area (BSA). RESULTS: The heart weight increased along with an increase in all the parameters studied. The mean heart weight was greater in men than in women at a similar body weight. BSA was determined to be the best predictor for normal heart weight. New reference tables for predicted heart weights are presented as a web application that enable the comparison of heart weights observed at autopsy with the reference values. CONCLUSIONS: The reference tables for heart weight and other organs should be systematically updated and adapted for the local population. Web access and smartphone applications for the predicted heart weight represent important investigational tools.
Resumo:
BACKGROUND: Knowledge of normal heart weight ranges is important information for pathologists. Comparing the measured heart weight to reference values is one of the key elements used to determine if the heart is pathological, as heart weight increases in many cardiac pathologies. The current reference tables are old and in need of an update. AIMS: The purposes of this study are to establish new reference tables for normal heart weights in the local population and to determine the best predictive factor for normal heart weight. We also aim to provide technical support to calculate the predictive normal heart weight. METHODS: The reference values are based on retrospective analysis of adult Caucasian autopsy cases without any obvious pathology that were collected at the University Centre of Legal Medicine in Lausanne from 2007 to 2011. We selected 288 cases. The mean age was 39.2 years. There were 118 men and 170 women. Regression analyses were performed to assess the relationship of heart weight to body weight, body height, body mass index (BMI) and body surface area (BSA). RESULTS: The heart weight increased along with an increase in all the parameters studied. The mean heart weight was greater in men than in women at a similar body weight. BSA was determined to be the best predictor for normal heart weight. New reference tables for predicted heart weights are presented as a web application that enable the comparison of heart weights observed at autopsy with the reference values. CONCLUSIONS: The reference tables for heart weight and other organs should be systematically updated and adapted for the local population. Web access and smartphone applications for the predicted heart weight represent important investigational tools.
Resumo:
Molecular shape has long been known to be an important property for the process of molecular recognition. Previous studies postulated the existence of a drug-like shape space that could be used to artificially bias the composition of screening libraries, with the aim to increase the chance of success in Hit Identification. In this work, it was analysed to which extend this assumption holds true. Normalized Principal Moments of Inertia Ratios (NPRs) have been used to describe the molecular shape of small molecules. It was investigated, whether active molecules of diverse targets are located in preferred subspaces of the NPR shape space. Results illustrated a significantly stronger clustering than could be expected by chance, with parts of the space unlikely to be occupied by active compounds. Furthermore, a strong enrichment of elongated, rather flat shapes could be observed, while globular compounds were highly underrepresented. This was confirmed for a wide range of small molecule datasets from different origins. Active compounds exhibited a high overlap in their shape distributions across different targets, making a purely shape based discrimination very difficult. An additional perspective was provided by comparing the shapes of protein binding pockets with those of their respective ligands. Although more globular than their ligands, it was observed that binding sites shapes exhibited a similarly skewed distribution in shape space: spherical shapes were highly underrepresented. This was different for unoccupied binding pockets of smaller size. These were on the contrary identified to possess a more globular shape. The relation between shape complementarity and exhibited bioactivity was analysed; a moderate correlation between bioactivity and parameters including pocket coverage, distance in shape space, and others could be identified, which reflects the importance of shape complementarity. However, this also suggests that other aspects are of relevance for molecular recognition. A subsequent analysis assessed if and how shape and volume information retrieved from pocket or respective reference ligands could be used as a pre-filter in a virtual screening approach. ln Lead Optimization compounds need to get optimized with respect to a variety of pararneters. Here, the availability of past success stories is very valuable, as they can guide medicinal chemists during their analogue synthesis plans. However, although of tremendous interest for the public domain, so far only large corporations had the ability to mine historical knowledge in their proprietary databases. With the aim to provide such information, the SwissBioisostere database was developed and released during this thesis. This database contains information on 21,293,355 performed substructural exchanges, corresponding to 5,586,462 unique replacements that have been measured in 35,039 assays against 1,948 molecular targets representing 30 target classes, and on their impact on bioactivity . A user-friendly interface was developed that provides facile access to these data and is accessible at http//www.swissbioisostere.ch. The ChEMBL database was used as primary data source of bioactivity information. Matched molecular pairs have been identified in the extracted and cleaned data. Success-based scores were developed and integrated into the database to allow re-ranking of proposed replacements by their past outcomes. It was analysed to which degree these scores correlate with chemical similarity of the underlying fragments. An unexpectedly weak relationship was detected and further investigated. Use cases of this database were envisioned, and functionalities implemented accordingly: replacement outcomes are aggregatable at the assay level, and it was shawn that an aggregation at the target or target class level could also be performed, but should be accompanied by a careful case-by-case assessment. It was furthermore observed that replacement success depends on the activity of the starting compound A within a matched molecular pair A-B. With increasing potency the probability to lose bioactivity through any substructural exchange was significantly higher than in low affine binders. A potential existence of a publication bias could be refuted. Furthermore, often performed medicinal chemistry strategies for structure-activity-relationship exploration were analysed using the acquired data. Finally, data originating from pharmaceutical companies were compared with those reported in the literature. It could be seen that industrial medicinal chemistry can access replacement information not available in the public domain. In contrast, a large amount of often-performed replacements within companies could also be identified in literature data. Preferences for particular replacements differed between these two sources. The value of combining different endpoints in an evaluation of molecular replacements was investigated. The performed studies highlighted furthermore that there seem to exist no universal substructural replacement that always retains bioactivity irrespective of the biological environment. A generalization of bioisosteric replacements seems therefore not possible. - La forme tridimensionnelle des molécules a depuis longtemps été reconnue comme une propriété importante pour le processus de reconnaissance moléculaire. Des études antérieures ont postulé que les médicaments occupent préférentiellement un sous-ensemble de l'espace des formes des molécules. Ce sous-ensemble pourrait être utilisé pour biaiser la composition de chimiothèques à cribler, dans le but d'augmenter les chances d'identifier des Hits. L'analyse et la validation de cette assertion fait l'objet de cette première partie. Les Ratios de Moments Principaux d'Inertie Normalisés (RPN) ont été utilisés pour décrire la forme tridimensionnelle de petites molécules de type médicament. Il a été étudié si les molécules actives sur des cibles différentes se co-localisaient dans des sous-espaces privilégiés de l'espace des formes. Les résultats montrent des regroupements de molécules incompatibles avec une répartition aléatoire, avec certaines parties de l'espace peu susceptibles d'être occupées par des composés actifs. Par ailleurs, un fort enrichissement en formes allongées et plutôt plates a pu être observé, tandis que les composés globulaires étaient fortement sous-représentés. Cela a été confirmé pour un large ensemble de compilations de molécules d'origines différentes. Les distributions de forme des molécules actives sur des cibles différentes se recoupent largement, rendant une discrimination fondée uniquement sur la forme très difficile. Une perspective supplémentaire a été ajoutée par la comparaison des formes des ligands avec celles de leurs sites de liaison (poches) dans leurs protéines respectives. Bien que plus globulaires que leurs ligands, il a été observé que les formes des poches présentent une distribution dans l'espace des formes avec le même type d'asymétrie que celle observée pour les ligands: les formes sphériques sont fortement sous représentées. Un résultat différent a été obtenu pour les poches de plus petite taille et cristallisées sans ligand: elles possédaient une forme plus globulaire. La relation entre complémentarité de forme et bioactivité a été également analysée; une corrélation modérée entre bioactivité et des paramètres tels que remplissage de poche, distance dans l'espace des formes, ainsi que d'autres, a pu être identifiée. Ceci reflète l'importance de la complémentarité des formes, mais aussi l'implication d'autres facteurs. Une analyse ultérieure a évalué si et comment la forme et le volume d'une poche ou de ses ligands de référence pouvaient être utilisés comme un pré-filtre dans une approche de criblage virtuel. Durant l'optimisation d'un Lead, de nombreux paramètres doivent être optimisés simultanément. Dans ce contexte, la disponibilité d'exemples d'optimisations réussies est précieuse, car ils peuvent orienter les chimistes médicinaux dans leurs plans de synthèse par analogie. Cependant, bien que d'un extrême intérêt pour les chercheurs dans le domaine public, seules les grandes sociétés pharmaceutiques avaient jusqu'à présent la capacité d'exploiter de telles connaissances au sein de leurs bases de données internes. Dans le but de remédier à cette limitation, la base de données SwissBioisostere a été élaborée et publiée dans le domaine public au cours de cette thèse. Cette base de données contient des informations sur 21 293 355 échanges sous-structuraux observés, correspondant à 5 586 462 remplacements uniques mesurés dans 35 039 tests contre 1948 cibles représentant 30 familles, ainsi que sur leur impact sur la bioactivité. Une interface a été développée pour permettre un accès facile à ces données, accessible à http:/ /www.swissbioisostere.ch. La base de données ChEMBL a été utilisée comme source de données de bioactivité. Une version modifiée de l'algorithme de Hussain et Rea a été implémentée pour identifier les Matched Molecular Pairs (MMP) dans les données préparées au préalable. Des scores de succès ont été développés et intégrés dans la base de données pour permettre un reclassement des remplacements proposés selon leurs résultats précédemment observés. La corrélation entre ces scores et la similarité chimique des fragments correspondants a été étudiée. Une corrélation plus faible qu'attendue a été détectée et analysée. Différents cas d'utilisation de cette base de données ont été envisagés, et les fonctionnalités correspondantes implémentées: l'agrégation des résultats de remplacement est effectuée au niveau de chaque test, et il a été montré qu'elle pourrait également être effectuée au niveau de la cible ou de la classe de cible, sous réserve d'une analyse au cas par cas. Il a en outre été constaté que le succès d'un remplacement dépend de l'activité du composé A au sein d'une paire A-B. Il a été montré que la probabilité de perdre la bioactivité à la suite d'un remplacement moléculaire quelconque est plus importante au sein des molécules les plus actives que chez les molécules de plus faible activité. L'existence potentielle d'un biais lié au processus de publication par articles a pu être réfutée. En outre, les stratégies fréquentes de chimie médicinale pour l'exploration des relations structure-activité ont été analysées à l'aide des données acquises. Enfin, les données provenant des compagnies pharmaceutiques ont été comparées à celles reportées dans la littérature. Il a pu être constaté que les chimistes médicinaux dans l'industrie peuvent accéder à des remplacements qui ne sont pas disponibles dans le domaine public. Par contre, un grand nombre de remplacements fréquemment observés dans les données de l'industrie ont également pu être identifiés dans les données de la littérature. Les préférences pour certains remplacements particuliers diffèrent entre ces deux sources. L'intérêt d'évaluer les remplacements moléculaires simultanément selon plusieurs paramètres (bioactivité et stabilité métabolique par ex.) a aussi été étudié. Les études réalisées ont souligné qu'il semble n'exister aucun remplacement sous-structural universel qui conserve toujours la bioactivité quel que soit le contexte biologique. Une généralisation des remplacements bioisostériques ne semble donc pas possible.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
HTPSELEX is a public database providing access to primary and derived data from high-throughput SELEX experiments aimed at characterizing the binding specificity of transcription factors. The resource is primarily intended to serve computational biologists interested in building models of transcription factor binding sites from large sets of binding sequences. The guiding principle is to make available all information that is relevant for this purpose. For each experiment, we try to provide accurate information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, assembled clone sequences (concatemers) and complete sets of in vitro selected protein-binding tags. In addition, we offer in-house derived binding sites models. HTPSELEX also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols. The FTP site contains the trace archives and database flatfiles. The web server offers user-friendly interfaces for viewing individual entries and quality-controlled download of SELEX sequence libraries according to a user-defined sequencing quality threshold. HTPSELEX is available from ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex/ and http://www.isrec.isb-sib.ch/htpselex.
Resumo:
Amplified Fragment Length Polymorphisms (AFLPs) are a cheap and efficient protocol for generating large sets of genetic markers. This technique has become increasingly used during the last decade in various fields of biology, including population genomics, phylogeography, and genome mapping. Here, we present RawGeno, an R library dedicated to the automated scoring of AFLPs (i.e., the coding of electropherogram signals into ready-to-use datasets). Our program includes a complete suite of tools for binning, editing, visualizing, and exporting results obtained from AFLP experiments. RawGeno can either be used with command lines and program analysis routines or through a user-friendly graphical user interface. We describe the whole RawGeno pipeline along with recommendations for (a) setting the analysis of electropherograms in combination with PeakScanner, a program freely distributed by Applied Biosystems; (b) performing quality checks; (c) defining bins and proceeding to scoring; (d) filtering nonoptimal bins; and (e) exporting results in different formats.
Resumo:
Centrifuge is a user-friendly system to simultaneously access Arabidopsis gene annotations and intra- and inter-organism sequence comparison data. The tool allows rapid retrieval of user-selected data for each annotated Arabidopsis gene providing, in any combination, data on the following features: predicted protein properties such as mass, pI, cellular location and transmembrane domains; SWISS-PROT annotations; Interpro domains; Gene Ontology records; verified transcription; BLAST matches to the proteomes of A.thaliana, Oryza sativa (rice), Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. The tool lends itself particularly well to the rapid analysis of contigs or of tens or hundreds of genes identified by high-throughput gene expression experiments. In these cases, a summary table of principal predicted protein features for all genes is given followed by more detailed reports for each individual gene. Centrifuge can also be used for single gene analysis or in a word search mode. AVAILABILITY: http://centrifuge.unil.ch/ CONTACT: edward.farmer@unil.ch.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The R package EasyStrata facilitates the evaluation and visualization of stratified genome-wide association meta-analyses (GWAMAs) results. It provides (i) statistical methods to test and account for between-strata difference as a means to tackle gene-strata interaction effects and (ii) extended graphical features tailored for stratified GWAMA results. The software provides further features also suitable for general GWAMAs including functions to annotate, exclude or highlight specific loci in plots or to extract independent subsets of loci from genome-wide datasets. It is freely available and includes a user-friendly scripting interface that simplifies data handling and allows for combining statistical and graphical functions in a flexible fashion. AVAILABILITY: EasyStrata is available for free (under the GNU General Public License v3) from our Web site www.genepi-regensburg.de/easystrata and from the CRAN R package repository cran.r-project.org/web/packages/EasyStrata/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Diagrams and tools help to support task modelling in engi- neering and process management. Unfortunately they are unfit to help in a business context at a strategic level, because of the flexibility needed for creative thinking and user friendly interactions. We propose a tool which bridges the gap between freedom of actions, encouraging creativity, and constraints, allowing validation and advanced features.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms. Database URL: http://eurodia.vital-it.ch.
Resumo:
The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. WWW-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch
Resumo:
BACKGROUND/AIMS: For many therapeutic decisions in Crohn's disease (CD), high-grade evidence is lacking. To assist clinical decision-making, explicit panel-based appropriateness criteria were developed by an international, multidisciplinary expert panel. METHODS: 10 gastroenterologists, 3 surgeons and 2 general practitioners from 12 European countries assessed the appropriateness of therapy for CD using the RAND Appropriateness Method. Their assessment was based on the study of a recent literature review of the subject, combined with their own expert clinical judgment. Panelists rated clinical indications and treatment options using a 9-point scale (1 = extremely inappropriate; 9 = extremely appropriate). These scenarios were then discussed in detail at the panel meeting and re-rated. Median ratings and disagreement were used to aggregate ratings into three assessment categories: appropriate (A), uncertain (U) and inappropriate (I). RESULTS: 569 specific indications were rated, dealing with 9 clinical presentations: mild/moderate luminal CD (n = 104), severe CD (n = 126), steroid-dependent CD (n = 25), steroid-refractory CD (n = 37), fistulizing CD (n = 49), fibrostenotic CD (n = 35), maintenance of medical remission of CD (n = 84), maintenance of surgical remission (n = 78), drug safety in pregnancy (n = 24) and use of infliximab (n = 7). Overall, 146 indications (26%) were judged appropriate, 129 (23%) uncertain and 294 (52%) inappropriate. Frank disagreement was low (14% overall) with the greatest disagreement (54% of scenarios) being observed for treatment of steroid-refractory disease. CONCLUSIONS: Detailed explicit appropriateness criteria for the appropriate use of therapy for CD were developed for the first time by a European expert panel. Disease location, severity and previous treatments were the main factors taken into account. User-friendly access to EPACT criteria is available via an Internet site, www.epact.ch, allowing prospective evaluation and improvement of appropriateness of current CD therapy.