2 resultados para Urogenital
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVES: To investigate the development of the ureterovesical junction in rats. METHODS: A total of 110 albino rats (50 prenatal and 60 newborn) with a gestation of 21 days were studied at the age of 17 days after conception until 5 days after birth. The lower urinary tract was microdissected. Microphotography (110 animals), histologic examination (44 animals), and scanning electron microscopy (66 animals) of the ureterovesical junction were performed. Urea and creatinine from the amniotic fluid of 20 fetuses and from the urine of 10 neonates were measured. RESULTS: At day 17 after conception, separate penetration of the mesonephric duct and ureter into the wall of the urogenital sinus was observed. Continuity between the lumen of the ureter and the urogenital sinus was established on day 19 after conception. The straight passage of the intramural ureter into the urogenital sinus at day 17 after conception changed to the definitive L-shape with a vertical entry into the bladder on day 5 after birth. In the distal ureter, the change of the mesenchymal tissue into immature smooth muscle was first observed at birth, and the muscle became mature on the fifth postnatal day. At birth, Waldeyer's sheath was recognized. The creatinine and urea levels were stable prenatally (average 22.4 micromol/L and 6.88 mmol/L, respectively) and rose significantly postnatally (average 133 micromol/L and 32.65 mmol/L, respectively). CONCLUSIONS: The attachment of the ureter to the urogenital sinus and later to the bladder, the modification of its passage, and its mobility within Waldeyer's sheath may be essential in preventing vesicoureteral reflux. The production of urine and its flow does not seem to be the trigger of ureteral smooth muscle formation.
Resumo:
OBJECTIVE: To evaluate the pertinence of prenatal diagnosis in cases of congenital uropathy. STUDY DESIGN: Retrospective evaluation over a period of 6.5 years. METHOD: 93 cases were involved in the comparison of prenatal ultrasonographic diagnosis with neonatal findings, autopsy results, and follow-up data. RESULTS: 33 fetuses had renal parenchymal lesions, 44 had excretory system lesions, and 6 had bladder and/or urethral lesions. Seventy-three pregnancies lead to live births. Eighteen terminations of pregnancy were performed on the parents' request for extremely severe malformations. Two intrauterine deaths were observed, and two infants died in the postnatal period. Prenatal diagnosis was obtained at an average of 27 weeks gestation. Diagnostic concordance was excellent in 82% and partial in 12% of cases with renal parenchymal lesions; the false-positive rate was 6%. For excretory system lesions, concordance was excellent in 87% and partial in 7.4% of cases, with a false-positive rate of 5.6%. Finally, concordance was excellent in 100% of cases of bladder and/or urethral lesions. The overall rate of total concordance was 86%. Partial concordance cases consisted of malformations different from those previously diagnosed, but prenatal diagnosis nevertheless lead to further investigations in the neonatal period and to proper management. The false-positive diagnoses (5.4%) never lead to termination of pregnancy. CONCLUSION: Prenatal diagnosis of congenital uropathy is effective. A third-trimester ultrasonographic examination is necessary to ensure proper neonatal management, considering that the majority of cases are diagnosed at this gestational age.