26 resultados para Urban environmental problems

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development and environmental issues of small cities in developing countries have largely been overlooked although these settlements are of global demographic importance and often face a "triple challenge"; that is, they have limited financial and human resources to address growing environmental problems that are related to both development (e.g., pollution) and under-development (e.g., inadequate water supply). Neoliberal policy has arguably aggravated this challenge as public investments in infrastructure generally declined while the focus shifted to the metropolitan "economic growth machines". This paper develops a conceptual framework and agenda for the study of small cities in the global south, their environmental dynamics, governance and politics in the current neoliberal context. While small cities are governed in a neoliberal policy context, they are not central to neoliberalism, and their (environmental) governance therefore seems to differ from that of global cities. Furthermore, "actually existing" neoliberal governance of small cities is shaped by the interplay of regional and local politics and environmental situations. The approach of urban political ecology and the concept of rural-urban linkages are used to consider these socio-ecological processes. The conceptual framework and research agenda are illustrated in the case of India, where the agency of small cities in regard to environmental governance seems to remain limited despite formal political decentralization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity" states the WHO. However, the current focus in this important area seems to be on reducing diseases, while less attention is paid on aspects how to increase the well-being of populations. This paper reviews three examples where well-being has drawn attention of the public and policy makers, and compares the policies of two wealthy countries. The first example is noise. Noise can reduce sleep quality and cause physiological, mental, and social effects. In Switzerland, noise receives a lot of attention by the public. Swiss laws are extensive, e.g., they prohibit trucks and planes from traveling at night. In the USA, there is little public attention and no national strategy against environmental noise. The second example is aesthetics and recreation. Many humans seek contact with the beauty of nature. The USA and Switzerland have similar strategies for achieving clear waters, while the protection of scenic views is approached very differently. Lifestyle is the last example. In the USA, the desire for individual freedom is a leading cause for suburban sprawl, a car-dependent sedentary lifestyle resulting in obesity, asthma and loss of community spirit. In Switzerland, a strict land use planning seeks to balance individual and public interests and stresses public transportation, which seems to be a more promising approach. Paying attention to aspects of well-being while developing political strategies might be a promising model to tackle environmental problems. Successful strategies employed so far seem to include the public, local authorities, politicians and scientists in this process, which might have been a key for their success. [Authors]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of herbicides in agriculture may lead to environmental problems, such as surface water pollution, with a potential risk for aquatic organisms. The herbicide glyphosate is the most used active ingredient in the world and in Switzerland. In the Lavaux vineyards it is nearly the only molecule applied. This work aimed at studying its fate in soils and its transfer to surface waters, using a multi-scale approach: from molecular (10-9 m) and microscopic scales (10-6 m), to macroscopic (m) and landscape ones (103 m). First of all, an analytical method was developed for the trace level quantification of this widely used herbicide and its main by-product, aminomethylphosphonic acid (AMPA). Due to their polar nature, their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. They were then analyzed by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method was tested in different aqueous matrices with spiking tests and validated for the matrix effect correction in relevant environmental samples. Calibration curves established between 10 and 1000ng/l showed r2 values above 0.989, mean recoveries varied between 86 and 133% and limits of detection and quantification of the method were as low as 5 and 10ng/l respectively. At the parcel scale, two parcels of the Lavaux vineyard area, located near the Lutrive River at 6km to the east of Lausanne, were monitored to assess to which extent glyphosate and AMPA were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. Results revealed that the mobility of glyphosate and AMPA in the unsaturated zone was likely driven by the precipitation regime and the soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Elevated glyphosate and AMPA concentrations were measured at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flow in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which for the lateral transport of the herbicide molecules was determined by the slope steepness. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. A mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. Observations made in the Lutrive River revealed interesting details of glyphosate and AMPA dynamics in urbanized landscapes, such as the Lavaux vineyards. Indeed, besides their physical and chemical properties, herbicide dynamics at the catchment level strongly depend on application rates, precipitation regime, land use and also on the presence of drains or constructed channels. Elevated concentrations, up to 4970 ng/l, observed just after the application, confirmed the diffuse export of these compounds from the vineyard area by surface runoff during main rain events. From April to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Small vineyard surfaces could generate high concentrations of herbicides and contribute considerably to the total load calculated at the outlet, due to their steep slopes (~10%). The extrapolated total amount transferred yearly from the Lavaux vineyards to the Lake of Geneva was of 190kg. At the molecular scale, the possible involvement of dissolved organic matter (DOM) in glyphosate and copper transport was studied using UV/Vis fluorescence spectroscopy. Combined with parallel factor (PARAFAC) analysis, this technique allowed characterizing DOM of soil and surface water samples from the studied vineyard area. Glyphosate concentrations were linked to the fulvic-like spectroscopic signature of DOM in soil water samples, as well as to copper, suggesting the formation of ternary complexes. In surface water samples, its concentrations were also correlated to copper ones, but not in a significant way to the fulvic-like signature. Quenching experiments with standards confirmed field tendencies in the laboratory, with a stronger decrease in fluorescence intensity for fulvic-like fluorophore than for more aromatic ones. Lastly, based on maximum concentrations measured in the river, an environmental risk for these compounds was assessed, using laboratory tests and ecotoxicity data from the literature. In our case and with the methodology applied, the risk towards aquatic species was found negligible (RF<1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution range of Lactuca serriola, a species native to the summer-dry mediterranean climate, has expanded northwards during the last 250 years. This paper assesses the influence of climate on the range expansion of this species and highlights the importance of anthropogenic disturbance to its spread. Location Central and Northern Europe. Methods Data on the geographic distribution of L. serriola were assembled through a literature search as well as through floristic and herbarium surveys. Maps of the spread of L. serriola in Central and Northern Europe were prepared based on herbarium data. The spread was assessed more precisely in Germany, Austria and Great Britain by pooling herbarium and literature data. We modelled the bioclimatic niche of the species using occurrence and climatic data covering the last century to generate projections of suitable habitats under the climatic conditions of five time periods. We tested whether the observed distribution of L. serriola could be explained for each time period, assuming that the climatic niche of the species was conserved across time. Results The species has spread northwards since the beginning of the 19th century. We show that climate warming in Europe increased the number of sites suitable for the species at northern latitudes. Until the late 1970s, the distribution of the species corresponded to the climatically suitable sites available. For the last two decades, however, we could not show any significant relationship between the increase in suitable sites and the distributional range change of L. serriola. However, we highlight potential areas the species could spread to in the future (Great Britain, southern Scandinavia and the Swedish coast). It is predominantly non-climatic influences of global change that have contributed to its rapid spread. Main conclusions The observation that colonizing species are not filling their climatically suitable range might imply that, potentially, other ruderal species could expand far beyond their current range. Our work highlights the importance of historical floristic and herbarium data for understanding the expansion of a species. Such historical distributional data can provide valuable information for those planning the management of contemporary environmental problems, such as species responses to environmental change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter discusses how the industrial ecological systems can help in dealing with environmental issues in developing countries, and it presents three case studies from India that highlight some of the unique environmental issues of developing world. Industrial ecology explores the assumption that the industrial system can be seen as a certain kind of ecosystem. The scope of industrial ecology goes well beyond waste exchange to the optimization of resources flowing through the economic system. Among the various specific aspects of developing countries, which have to be born in mind, is the fact that the pattern of resource flows in developing countries, and hence, the resultant environmental threat could be very different than what it is in the industrialized west. Typically, the flow of materials through the large, organized manufacturing facilities in the developing countries could be very small in relation to the overall material flow as the small, informal ?industry? plays a key role and forms a very significant portion of the economic activity. The case studies of the Tirupur textile industries, and the leather industry in India, illustrate how redefining the problem from a perspective of resource conservation, and on the basis of resource flow data could point to totally new directions for strategy planning. The case study of the Damodar Valley region amplifies the importance of looking beyond formal industry to solve an environmental problem. It shows that even for globally critical programs, such as climate change program in developing countries, it is just not enough to estimate the emissions from the formal industrial sectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

General Summary Although the chapters of this thesis address a variety of issues, the principal aim is common: test economic ideas in an international economic context. The intention has been to supply empirical findings using the largest suitable data sets and making use of the most appropriate empirical techniques. This thesis can roughly be divided into two parts: the first one, corresponding to the first two chapters, investigates the link between trade and the environment, the second one, the last three chapters, is related to economic geography issues. Environmental problems are omnipresent in the daily press nowadays and one of the arguments put forward is that globalisation causes severe environmental problems through the reallocation of investments and production to countries with less stringent environmental regulations. A measure of the amplitude of this undesirable effect is provided in the first part. The third and the fourth chapters explore the productivity effects of agglomeration. The computed spillover effects between different sectors indicate how cluster-formation might be productivity enhancing. The last chapter is not about how to better understand the world but how to measure it and it was just a great pleasure to work on it. "The Economist" writes every week about the impressive population and economic growth observed in China and India, and everybody agrees that the world's center of gravity has shifted. But by how much and how fast did it shift? An answer is given in the last part, which proposes a global measure for the location of world production and allows to visualize our results in Google Earth. A short summary of each of the five chapters is provided below. The first chapter, entitled "Unraveling the World-Wide Pollution-Haven Effect" investigates the relative strength of the pollution haven effect (PH, comparative advantage in dirty products due to differences in environmental regulation) and the factor endowment effect (FE, comparative advantage in dirty, capital intensive products due to differences in endowments). We compute the pollution content of imports using the IPPS coefficients (for three pollutants, namely biological oxygen demand, sulphur dioxide and toxic pollution intensity for all manufacturing sectors) provided by the World Bank and use a gravity-type framework to isolate the two above mentioned effects. Our study covers 48 countries that can be classified into 29 Southern and 19 Northern countries and uses the lead content of gasoline as proxy for environmental stringency. For North-South trade we find significant PH and FE effects going in the expected, opposite directions and being of similar magnitude. However, when looking at world trade, the effects become very small because of the high North-North trade share, where we have no a priori expectations about the signs of these effects. Therefore popular fears about the trade effects of differences in environmental regulations might by exaggerated. The second chapter is entitled "Is trade bad for the Environment? Decomposing worldwide SO2 emissions, 1990-2000". First we construct a novel and large database containing reasonable estimates of SO2 emission intensities per unit labor that vary across countries, periods and manufacturing sectors. Then we use these original data (covering 31 developed and 31 developing countries) to decompose the worldwide SO2 emissions into the three well known dynamic effects (scale, technique and composition effect). We find that the positive scale (+9,5%) and the negative technique (-12.5%) effect are the main driving forces of emission changes. Composition effects between countries and sectors are smaller, both negative and of similar magnitude (-3.5% each). Given that trade matters via the composition effects this means that trade reduces total emissions. We next construct, in a first experiment, a hypothetical world where no trade happens, i.e. each country produces its imports at home and does no longer produce its exports. The difference between the actual and this no-trade world allows us (under the omission of price effects) to compute a static first-order trade effect. The latter now increases total world emissions because it allows, on average, dirty countries to specialize in dirty products. However, this effect is smaller (3.5%) in 2000 than in 1990 (10%), in line with the negative dynamic composition effect identified in the previous exercise. We then propose a second experiment, comparing effective emissions with the maximum or minimum possible level of SO2 emissions. These hypothetical levels of emissions are obtained by reallocating labour accordingly across sectors within each country (under the country-employment and the world industry-production constraints). Using linear programming techniques, we show that emissions are reduced by 90% with respect to the worst case, but that they could still be reduced further by another 80% if emissions were to be minimized. The findings from this chapter go together with those from chapter one in the sense that trade-induced composition effect do not seem to be the main source of pollution, at least in the recent past. Going now to the economic geography part of this thesis, the third chapter, entitled "A Dynamic Model with Sectoral Agglomeration Effects" consists of a short note that derives the theoretical model estimated in the fourth chapter. The derivation is directly based on the multi-regional framework by Ciccone (2002) but extends it in order to include sectoral disaggregation and a temporal dimension. This allows us formally to write present productivity as a function of past productivity and other contemporaneous and past control variables. The fourth chapter entitled "Sectoral Agglomeration Effects in a Panel of European Regions" takes the final equation derived in chapter three to the data. We investigate the empirical link between density and labour productivity based on regional data (245 NUTS-2 regions over the period 1980-2003). Using dynamic panel techniques allows us to control for the possible endogeneity of density and for region specific effects. We find a positive long run elasticity of density with respect to labour productivity of about 13%. When using data at the sectoral level it seems that positive cross-sector and negative own-sector externalities are present in manufacturing while financial services display strong positive own-sector effects. The fifth and last chapter entitled "Is the World's Economic Center of Gravity Already in Asia?" computes the world economic, demographic and geographic center of gravity for 1975-2004 and compares them. Based on data for the largest cities in the world and using the physical concept of center of mass, we find that the world's economic center of gravity is still located in Europe, even though there is a clear shift towards Asia. To sum up, this thesis makes three main contributions. First, it provides new estimates of orders of magnitudes for the role of trade in the globalisation and environment debate. Second, it computes reliable and disaggregated elasticities for the effect of density on labour productivity in European regions. Third, it allows us, in a geometrically rigorous way, to track the path of the world's economic center of gravity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after 60 days storage at 30 degrees C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with sugarcane molasses and immobilized on corncob powder retained 15-20% culturability after 30 days storage at 30 degrees C, whereas full culturability was maintained when cells were stored frozen at -20 degrees C. On the contrary, cells stored on corncob degraded gamma-HCH faster than those that had been stored frozen, with between 15 and 85% of gamma-HCH disappearance in microcosms within 20 h at 30 degrees C. Soil microcosm tests at 25 degrees C confirmed complete mineralization of [(14)C]-gamma-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on lead pollution was carried out on a sample of ca. 300 city children. This paper presents the errors producing bias in the sample. It is emphasized that, in Switzerland, the difference between the Swiss and the migrant population (the latter being mainly Italian and Spanish) must be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and objective. - Access to care in French disadvantaged urban areas remains an issue despite the implementation of local healthcare structures. To understand this contradiction, we investigated social representations held by inhabitants of such areas, as well as those of social and healthcare professionals, regarding events or behaviours that can impact low-income individuals' health. Method. - In the context of a health diagnosis, 288 inhabitants living in five disadvantaged districts of Aix-les-Bains, as well as 28 professionals working in these districts, completed an open-ended questionnaire. The two groups of respondents were asked to describe what could have an impact on health status from the inhabitants' point of view. The textual responses were analyzed using the Alceste method. Results. - We observed a number of differences in the way the inhabitants and professionals represented determinants of health in disadvantaged urban areas: the former proposed a representation mixing personal responsibility with physiological, social, familial, and professional aspects, whereas the latter associated health issues with marginalization (financial, drug, or alcohol problems) and personal responsibility. Both inhabitants and professionals mentioned control over events and lifestyle as determinants of health. Discussion. - The results are discussed regarding the consequences of these different representations on the beneficiary - healthcare-provider relationship in terms of communication and trust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'activité humaine affecte particulièrement la biodiversité, qui décline à une vitesse préoccupante. Parmi les facteurs réduisant la biodiversité, on trouve les espèces envahissantes. Symptomatiques d'un monde globalisé où l'échange se fait à l'échelle de la planète, certaines espèces, animales ou végétales, sont introduites, volontairement ou accidentellement par l'activité humaine (par exemple lors des échanges commerciaux ou par les voyageurs). Ainsi, ces espèces atteignent des régions qu'elles n'auraient jamais pu coloniser naturellement. Une fois introduites, l'absence de compétiteur peut les rendre particulièrement nuisibles. Ces nuisances sont plus ou moins directes, allant de problèmes sanitaires (p. ex. les piqûres très aigües des fourmis de feu, originaires d'Amérique du Sud et colonisant à une vitesse fulgurante les USA, l'Australie ou la Chine) à des nuisances sur la biodiversité (p. ex. les ravages de la perche du Nil sur la diversité unique des poissons Cichlidés du Lac Victoria). Il est donc important de pouvoir prévenir de telles introductions. De plus, pour le biologiste, ces espèces représentent une rare occasion de pouvoir comprendre les mécanismes évolutifs et écologiques qui expliquent le succès des envahissantes dans un monde où les équilibres sont bouleversés. Les modèles de niche environnementale sont un outil particulièrement utile dans le cadre de cette problématique. En reliant des observations d'espèces aux conditions environnementales où elles se trouvent, ils peuvent prédire la distribution potentielle des envahissantes, permettant d'anticiper et de mieux limiter leur impact. Toutefois, ils reposent sur des hypothèses pas évidentes à démontrer. L'une d'entre elle étant que la niche d'une espèce reste constante dans le temps, et dans l'espace. Le premier objectif de mon travail est de comparer si la niche d'une espèce envahissante diffère entre sa distribution d'origine native et celle d'origine introduite. En étudiant 50 espèces de plantes et 168 espèces de Mammifères, je démontre que c'est le cas et que par corolaire, il est possible de prédire leurs distributions. La deuxième partie de mon travail consiste à comprendre quelles seront les interactions entre le changement climatiques et les envahissantes, afin d'estimer leur impact sous un climat réchauffé. En étudiant la distribution de 49 espèces de plantes envahissantes, je démontre que les montagnes, régions relativement préservée par ce problème, deviendront bien plus exposées aux risques d'invasions biologiques. J'expose aussi comment les interactions entre l'activité humaine, le réchauffement climatique et les espèces envahissantes menacent la vigne sauvage en Europe et propose des zones géographiques particulièrement adaptée pour sa conservation. Enfin, à une échelle beaucoup plus locale, je montre qu'il est possible d'utiliser ces modèles de niches le long d'une rivière à une échelle extrêmement fine (1 mètre), potentiellement utile pour rationnaliser des mesures de conservations sur le terrain. - Biodiversity is significantly negatively affected by human activity. Invasive species are one of the most important factors causing biodiversity's decline. Intimately linked to the era of global trade, some plant or animal species can be accidentally or casually introduced with human activity (e.g. trade or travel). In this way, these species reach areas they could never reach through natural dispersal. Once naturalized, the lack of competitors can make these species highly noxious. Their effect is more or less direct, from sanitary problems (e.g. the harmful sting of Fire Ants, originating from South America and now spreading throughout USA, China and Australia) or can affect biodiversity (e.g. the Nile perch, devastating the one of the richest hotspot of Cichlid fishes diversity in Lake Victoria). It is thus important to prevent such harmful introductions. Moreover, invasive species represent for biologists one of the rare occasions to understand the evolutionary and ecological mechanisms behind the success of invaders in a world where natural equilibrium is already disturbed. Environmental niche models are particularly useful to tackle this problematic. By relating species observation to the environmental conditions where they occur, they can predict the potential distribution of invasive species, allowing a better anticipation and thus limiting their impact. However, they rely on strong assumption, one of the most important being that the modeled niche remains constant through space and time. The first aim of my thesis is to quantify the difference between the native and the invaded niche. By investigating 50 plant and 168 mammal species, I show that the niche is at least partially conserved, supporting for reliable predictions of invasive' s potential distributions. The second aim of my thesis is to understand the possible interactions between climate change and invasive species, such as to assess their impact under a warmer climate. By studying 49 invasive plant species, I show that mountain areas, which were relatively preserved, will become more suitable for biological invasions. Additionally, I show how interactions between human activity, global warming and invasive species are threatening the wild grapevine in Europe and propose geographical areas particularly adapted for conservation measures. Finally, at a much finer scale where conservation plannings ultimately take place, I show that it is possible to model the niche at very high resolution (1 meter) in an alluvial area allowing better prioritizations for conservation.