137 resultados para Upper jurassic
em Université de Lausanne, Switzerland
Resumo:
A high-resolution carbon and oxygen isotope analysis of Late Oxfordian-Early Kimmeridgian deep-shelf sediments of southern Germany is combined with investigation of nannofossil assemblage composition and sedimentological interpretations in order to evaluate the impact of regional palaeoenvironmental conditions on isotopic composition of carbonates. This study suggests that carbonate mud was essentially derived from the Jura shallow platform environments and also that the isotopic signature of carbonates deposited in the Swabian Alb deep shelf indirectly expresses the palaeoenvironmental evolution of the platform. Short-term fluctuations in delta(13) C and delta(18)O are probably controlled by changes in salinity (fresh-water input versus evaporation) in platform environments. Long-term fluctuations in carbon and oxygen isotope record throughout the Late Oxfordian-Early Kimmeridgian result from the interplay of increasing temperature and decreasing humidity, which both control the trophic level. Changes from mesotrophic to oligotrophic conditions in platform environments and in the deep-shelf surface waters are inferred. During the Late Oxfordian (Bimammatum Subzone to Planula Zone), the delta(13)C curve displays a positive shift of about 1 parts per thousand, which is comparable in intensity to global perturbations of the carbon cycle. This evident isotopic shift has not been documented yet in other basinal settings. It can be reasonably explained by local palaeoenvironmental changes on the Jura platform (salinity, temperature, and nutrient availability) that controlled platform carbonate production, and the geochemistry of overlying waters. However, increasing carbonate production on the Jura platform and related positive delta(13)C shifts recorded in the Swabian Alb deep shelf are the regional signatures of climatic changes affecting other palaeogeographical domains of Europe in which the carbonate production increased throughout the Late Oxfordian. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A continuous carbon isotope curve from Middle-Upper Jurassic pelagic carbonate rocks was acquired from two sections in the southern part of the Umbria-Marche Apennines in central Italy. At the Colle Bertone section (Terni) and the Terminilletto section (Rieti), the Upper Toarcian to Bajocian Calcari e Marne a Posidonia Formation and the Aalenian to Kimmeridgian Calcari e Marne a Posidonia and Calcari Diasprigni formations were sampled, respectively. Biostratigraphy in both sections is based on rich assemblages of calcareous nannofossils and radiolarians, as well as some ammonites found in the upper Toarcian-Bajocian interval. Both sections revealed a relative minimum of delta(13)C(PDB) close to + 2 parts per thousand in the Aalenian and a maximum around 3.5 parts per thousand in early Bajocian, associated with an increase in visible chert. In basinal sections in Umbria-Marche, this interval includes the very cherry base of the Calcari Diasprigni Formation (e.g. at Valdorbia) or the chert-rich uppermost portion of the Calcari a Posidonia (e.g at Bosso). In the Terminilletto section, the Bajocian-early Barthonian interval shows a gradual decrease in delta(13)C(PDB) values and a low around 2.3 parts per thousand. This part of the section is characterised by more than 40 m of almost chart-free limestones and correlates with a recurrence of limestone-rich facies in basinal sections at Valdorbia. A double peak with values of delta(13)C(PDB) around + 3 parts per thousand was observed in the Callovian and Oxfordian, constrained by well preserved radiolarian faunas. The maxima lie in the Callovian and the middle Oxfordian, and the minimum between the two peaks should be near the Callovian/Oxfordian boundary. In the Terminilletto section, visible chert increases together with delta(13)C(PDB) values from the middle Bathonian and reaches peak values in the Callovian-Oxfordian. In basinal sections in Umbria-Marche, a sharp increase in visible chert is observed at this level within the Calcari Diasprigni. A drop of delta(13)C values towards + 2 parts per thousand occurs in the Kimmeridgian and coincides with a decrease of visible chert in outcrop. The observed delta(13)C positive anomalies during the early Bajocian and the Callovian-Oxfordian may record changes in global climate towards warmer, more humid periods characterised by increased nutrient mobilisation and increased carbon burial. High biosiliceous (radiolarians, siliceous sponges) productivity and preservation appear to coincide with the delta(13)C positive anomalies, when the production of platform carbonates was subdued and ceased in many areas, with a drastic reduction of periplatform ooze input in many Tethyan basins. The carbon and silica cycles appear to be linked through global warming and increased continental weathering. Hydrothermal events related to extensive rifting and/or accelerated oceanic spreading may be the endogenic driving force that created a perturbation of the exogenic system (excess CO2 into the atmosphere and greenhouse conditions) reflected by the positive delta(13)C shifts and biosiliceous episodes.
Resumo:
Accreted terranes, comprising a wide variety of Late Jurassic and Early Cretaceous igneous and sedimentary rocks are an important feature of Cuban geology. Their characterization is helpful for understanding Caribbean paleogeography. The Guaniguanico terrane (western Cuba) is formed by upper Jurassic platform sediments intruded by microgranular dolerite dykes. The geochemical characteristics of the dolerite whole rock samples and their minerals (augitic clinopyroxene, labradorite and andesine) are consistent with a tholeiitic affinity. Major and trace element concentrations as well as Nd, Sr and Pb isotopes show that these rocks also have a continental affinity. Sample chemistry indicates that these lavas are similar to a low Ti-P2O5 (LTi) variety of continental flood basalts (CFB) similar to the dolerites of Ferrar (Tasmania). They derived from mixing of a lithospheric mantle Source and an asthenopheric component similar to E-MORB with minor markers of crustal contamination and sediment assimilation. However, the small quantity of Cuban magmatic rocks, similarly to Tasmania, Antarctica and Siberia differs from other volumetrically important CFB occurrences Such as Parana and Deccan. These dolerites are dated as 165-150 Ma and were emplaced during the separation of the Yucatan block from South America. They could in fact be part of the Yucatan-South America margin through which the intrusive system was emplaced and which was later accreted to the Cretaceous arc of central Cuba and to the Palaeogene arc of eastern Cuba. These samples could therefore reflect the pre-rift stage between North and South America and the opening of the gulf of Mexico.
Resumo:
We propose a new terrane subdivision of Nicaragua and Northern Costa Rica, based on Upper Triassic to Upper Cretaceous radiolarian biochronology of ribbon radiolarites, the newly studied Siuna Serpentinite Mélange, and published 40Ar/39Ar dating and geochemistry of mafic and ultramafic igneous rock units of the area. The new Mesquito Composite Oceanic Terrane (MCOT) comprises the southern half of the Chortis Block, that was assumed to be a continental fragment of N-America. The MCOT is defined by 4 corner localities characterized by ultramafic and mafic oceanic rocks and radiolarites of Late Triassic, Jurassic and Early Cretaceous age: 1. The Siuna Serpentinite Mélange (NE-Nicaragua), 2. The El Castillo Mélange (Nicaragua/Costa Rica border), 3.The Santa Elena Ultramafics (N-Costa Rica) and, 4. DSDP Legs 67/84. 1. The Siuna Serpentinite Mélange contains, high pressure metamorphic mafics and Middle Jurassic (Bajocian-Bathonian) radiolarites in original, sedimentary contact with arc-metandesites. The Siuna Mélange also contains Upper Jurassic black detrital chert formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma (earliest Cretaceous). 2. The El Castillo Mélange comprises a radiolarite block tectonically embedded in serpentinite that yielded a diverse Rhaetian (latest Triassic) radiolarian assemblage, the oldest fossils recovered so far from S-Central America. 3. The Santa Elena Ultramafics of N-Costa Rica together with the serpentinite outcrops near El Castillo (2) in Southern Nicaragua, are the southernmost outcrops of the MCOT. The Santa Elena Unit (3) itself is still undated, but it is thrust onto the middle Cretaceous Santa Rosa Accretionary Complex (SRAC), that contains Lower to Upper Jurassic, highly deformed radiolarite blocks, probably reworked from the MCOT, which was the upper plate with respect to the SRAC. 4. Serpentinites, metagabbros and basalts have long been known from DSDP Leg 67/84 (3), drilled off Guatemala in the Nicaragua-Guatemala forearc basement. They have been restudied and reveal 40Ar/39Ar dated Upper Triassic to middle Cretaceous enriched Ocean Island Basalts and Jurassic to Lower Cretaceous depleted Island arc rocks of probable Pacific origin. The area between localities 1-4 is largely covered by Tertiary to Recent arcs, but we suspect that its basement is made of oceanic/accreted terranes. Earthquake seismic studies indicate an ill-defined, shallow Moho in this area. The MCOT covers most of Nicaragua and could extend to Guatemala to the W and form the Lower (southern) Nicaragua Rise to the NE. Some basement complexes of Jamaica, Hispaniola and Puerto Rico may also belong to the MCOT. The Nicoya Complex s. str. has been regarded as an example of Caribbean crust and the Caribbean Large Igneous Province (CLIP). However, 40Ar/39Ar - dates on basalts and intrusives indicate ages as old as Early Cretaceous. Highly deformed Jurassic and Lower Cretaceous radiolarites occur as blocks within younger intrusives and basalts. Our interpretation is that radiolarites became first accreted to the MCOT, then became reworked into the Nicoya Plateau in Late Cretaceous times. This implies that the Nicoya Plateau formed along the Pacific edge of the MCOT, independent form the CLIP and most probably unrelated with he Galapagos hotspot. No Jurassic radiolarite, no older sediment age than Coniacian-Santonian, and no older 40Ar/39Ar age than 95 Ma is known from S-Central America between SE of Nicoya and Colombia. For us this area represents the trailing edge of the CLIP s. str.
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
The Jebel Ressas Pb-Zn deposits in North-Eastern Tunisia occur mainly as open-space fillings (lodes, tectonic breccia cements) in bioclastic limestones of the Upper Jurassic Ressas Formation and along the contact of this formation with Triassic rocks. The galena-sphalerite association and their alteration products (cerussite, hemimorphite, hydrozincite) are set within a calcite gangue. The Triassic rocks exhibit enrichments in trace metals, namely Pb, Co and Cd enrichment in clays and Pb, Zn, Cd, Co and Cr enrichment in carbonates, suggesting that the Triassic rocks have interacted with the ore-bearing fluids associated with the Jebel Ressas Pb-Zn deposits. The delta(18)O content of calcite associated with the Pb-Zn mineralization suggests that it is likely to have precipitated from a fluid that was in equilibrium with the Triassic dolostones. The delta(34)S values in galenas from the Pb-Zn deposits range from -1.5 to +11.4%, with an average of 5.9% and standard deviation of 3.9%. These data imply mixing of thermochemically-reduced heavy sulfur carried in geothermal- and fault-stress-driven deep-seated source fluid with bacterially-reduced light sulfur carried in topography-driven meteoric fluid. Lead isotope ratios in galenas from the Pb-Zn deposits are homogenous and indicate a single upper crustal source of base-metals for these deposits. Synthesis of the geochemical data with geological data suggests that the base-metal mineralization at Jebel Ressas was formed during the Serravallian-Tortonian (or Middle-Late Miocene) Alpine compressional tectonics.
Resumo:
Herein we report an analysis of an Oxfordian (Upper Jurassic) paleoreef located in the Swiss Jura Mountains. The paleoreef is located in a Middle Oxfordian transitional interval in which sedimentation switched from marl-dominated to carbonate-dominated deposits. The paleoecosystem is composed of four successive fossil communities characterized by microsolenid corals and organisms that specialized in suspension feeding. Carbon isotopes measured from echinoid spine carbonates exhibit a positive trend from similar to 1.0 parts per thousand to 2.5 parts per thousand in delta(13)C values from the base to the top of the paleoreef. Comparison of delta(13)C curves with organic matter and belemnites shows different patterns not compatible with a global variation of the carbon cycle. Similar fossil assemblages and stratigraphic sequences identical in age are found along the continental margin of the Tethys-Atlantic Ocean. This biolithostratigraphic succession corresponds to increasing delta(13)C values of marine and biogenic carbonates, to the transition from marl-dominated to carbonate-dominated deposits, and to the development of carbonate platforms, which together suggest a change in the carbon cycling regime within the Tethys-Atlantic Ocean system.
Resumo:
This study analyses the stratigraphy, structure and kinematics of the northern part of the Adula nappe of the Central Alps. The Adula nappe is one of the highest basement nappes in the Lower Penninic nappe stack of the Lepontine Dome. This structural position makes possible the investigation of the transition between the Helvetic and North Penninic paleogeographic domains. The Adula nappe is principally composed of crystalline basement rocks. The investigation of the pre-Triassic basement shows that it contains several Palaeozoic detrital metasedimentary formations dated from the Cambrian to the Ordovician. These formations contain also some volcanic or intrusive magmatic rocks. Ordovician metagranites dated at ~450 Ma are also a common rock-type of the Adula basement. These formations underwent Alpine and Variscan deformation and metamorphism. Permian granites (Zervreila orthogneiss, dated at ~290 Ma) have intruded this pre-structured basement in a post-orogenic geodynamic context. Due to their age, the Zervreila orthogneiss are good markers for alpine deformation. The stratigraphy of the Mesozoic and Paleogene sedimentary cover of the Adula nappe is essential to unraveling its pre- orogenic history. The autochthonous cover is assigned to a North Penninic Triassic series that testifies for a transition between the Helvetic and Briançonnais Triassic domains. The Adula domain goes through an emersion during the Middle Jurassic, and is part of a topographic high during the first phase of the Alpine rift. The sediments of the late Middle Jurassic show a drowning phase associated with a tectonic activity and a breccia formation. In the neighbouring domains, coeval with the drowning phase in the Adula domain, a strong extensional crustal delamination and a scattered magmatic activity is associated with the main opening of the North Penninic domain. The Upper Jurassic of the Adula nappe is characterized by a carbonate formation comparable with those in the Helvetic or Subbriaçonnais domains. Flysch s.l. deposition starts probably at the end of the Cretaceous. These sediments are deposited on a large unconformity testifying for a Cretaceous sedimentary gap. The Adula nappe exhibits a very complex structure. This structure is formed by several deformation phases. Two ductile deformations are responsible for the nappe emplacement. The first deformation phase is associated with a folding compatible with a top-to-south movement at the top of the nappe. The second phase is dominant and pervasive throughout the whole nappe. It goes with a strong north vergent folding and the main nappe emplacement. These two phases cause the exhumation and emplacement of a coherent, although pre-structured, piece of continental crust. Two further deformation phases postdate the nappe emplacement. - Ce travail concerne l'étude géologique de la partie nord de la nappe de l'Adula dans les Alpes centrales. La nappe de l'Adula est l'une des nappes cristallines la plus élevée dans la pile des nappes du Pennique inférieur des Alpes lepontines. Cette position particulière permet d'étudier la transition entre les nappes des domaines helvétique et pennique inférieur. La nappe de l'Adula est principalement composée de socle cristallin : l'étude de l'histoire géologique du socle est donc l'un des thèmes de cette recherche. Ce socle contient plusieurs formations métasédimentaires paléozoïques du Cambrien à I'Ordovicien. Ces métasédiments sont issus de formations clastiques comprenant souvent des roches magmatiques volcaniques et intrusives. Ces métasédiments ont subi les cycles orogéniques varisque et alpin. La nappe de l'Adula contient plusieurs corps magmatiques granitiques métamorphisés. Les premiers métagranites sont Ordovicien et témoignent d'un environnement de marge active. Ces granites sont aussi polymétamorphiques. Les deuxièmes métagranites sont représentés par les orthogneiss de type Zervreila. Ce métagranite est d'âge permien (-290 Ma). Il est mis en place dans un contexte tectonique post-orogénique. Ce granite est un maqueur de la déformation alpine car il n'est pas affecté par les orogenèses précédentes, flippy Le contenu stratigraphique des roches mésozoïques et cénozoiques de la couverture sédimentaire de la nappe de l'Adula est'important pour en étudier son histoire pré-alpine. La couverture autochtone est composée d'une série d'âge triasique d'affinité nord-pennique, un faciès qui marque la transition entre les domaines helvétiques et briançonnais au Trias. Le domaine paléogéographique représenté dans la nappe de l'Adula connaît une émersion pendant le Jurassique moyen. Cette émersion marque le commencement du rift dans le domaine alpin. La sédimentation de la fin du Jurassique moyen est marquée par une transgression marine accompagnée par des mouvements tectoniques et la formation d'une brèche. Cette transgression est contemporaine des importants mouvements tectoniques et des manifestations magmatiques dans les unités voisines qui marquent la phase principale d'ouverture du bassin nord-pennique. Le Jurassique supérieur est caractérisé par l'instauration d'une sédimentation carbonatée comparable à celle du domaine helvétique ou subbriançonnais. Une sédimentation flyschoïde, probablement du Crétacé à Tertiaire, est déposée sur une importante discordance qui témoigne d'une lacune au Crétacé. La structure complexe de la nappe de l'Adula témoigne de nombreuses phases de déformation. Ces phases de déformation sont en partie issues de la mise en place de la nappe et de déformations plus tardives. La mise en place de la nappe produit deux phases de déformation ductile : la première produit un plissement compatible avec un cisaillement top-vers-le sud dans la partie supérieure de la nappe; la deuxième produit un intense plissement qui accompagne la mise en place de la nappe vers le nord. Ces deux phases de déformation témoignent d'un mécanisme d'exhumation par déformation ductile d'un bloc cohérent.
Resumo:
Jurassic radiolarians from 220 samples in Queen Charlotte Islands, B.C., Williston Lake, B.C., east-central Oregon, Baja California Sur, southern Spain, Austria, Slovenia, Turkey, Oman, Japan and Argentina were studied in order to construct global zonation for the Pliensbachian, Toarcian and Aalenian stages. Well-preserved faunas from continuous stratigraphic sections in Queen Charlotte Islands provide the most detailed record for this time interval, and all collections are tied to North American ammonite zones or assemblages. Collections from nearly all other areas lack independent dating except for early Toarcian carbon-isotope dating in Slovenia and late Aalenian ammonites in Spain. A database of 197 widely distributed updated taxonomic species was used to construct a Unitary Association (UA) zonation for the interval. A global sequence of 41 UAs was obtained for the top of the Sinemurian to the base of the Bajocian. The first and the last UAs represent the Late Sinemurian and the Early Bajocian respectively. The remaining 39 UAs were merged into nine zones (four Early Pliensbachian, one Late Pliensbachian, one Early Toarcian, one Middle-Late Toarcian, and two Aalenian) according to prominent radiolarian faunal breaks and ammonite data. The new zones are the Canutus tip pen - Katroma clara Zone (latest Sinemurian/earliest Pliensbachian); Zartus mostleri - Pseudoristola megaglobosa, Hsuum mulleri - Trillus elkhornensis and Gigi fustis - Lantus sixi zones (Early Pliensbachian); Eucyrtidiellum nagaiae - Praeparvicingula tlellensis Zone (Late Pliensbachian); Napora relica - Eucyrtidiellum disparile Zone (Early Toarcian); Elodium pessagnoi - Hexasaturnalis hexagonus Zone (Middle and Late Toarcian); Higumastra transversa - Napora nipponica Zone (early Aalenian); and Mirifusus proavus - Transhsuum hisuikyoense Zone (late Aalenian). These zones can be correlated worldwide and link previously established UA zonations for the Hettangian-Sinemurian and the Middle to Upper Jurassic. The new zonation allows high-resolution dating in the studied interval and provides a solid basis for analyzing faunal turnovers and the paleobiogeography of Jurassic radiolarians. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Four distinct rock units have been recognized near El Aguacate, in the Janico-Juncalito-La Vega area of the Duarte complex (Dominican Republic): (1) serpentinites crosscut by numerous diabasic dikes, (2) basalts interbedded with Late Jurassic ribbon cherts, (3) picrites and ankaramites relatively enriched in incompatible trace elements, and (4) amphibolites and gneissic amphibolites chemically similar to Oceanic Plateau Basalts. Similar Ar-Ar ages of late magmatic amphibole from a picrite, and hornblende from an amphibolite (86.1 +/- 1.3 Ma and 86.7 +/- 1.6 Ma, respectively), suggest that the Duarte picrites are contemporaneous with the Deep Sea Drilling Program Leg 15 and Ocean Drilling Program Leg 126 basalts drilled from the Caribbean oceanic plateau. These basalts are associated with sediments containing Late Cretaceous faunas. Sr, Nd, and Pb data show that enriched picrites and amphibolites are isotopically similar to mafic lavas from previously described Caribbean plateau and Galapagos hotspot basalts. Major element, trace element, and lead isotopic features of Late Jurassic basalts and diabases are consistent with those of normal oceanic crust basalt. However, these basalts differ from typical N-MORB because they have lower epsilon Nd ratios that plot within the range of Ocean Island Basalts. These rocks appear to represent remnants of the Caribbean Jurassic oceanic crust formed from an oceanic ridge possibly close to a hotspot. Later, they were tectonically juxtaposed with Late Cretaceous slices of the Caribbean-Colombian plateau.
Resumo:
The Upper Lahul region in the NW Himalaya is located in the transition zone between the High Himalayan Crystalline (HHC) to the SW and the Tethyan Zone sedimentary series to the NE. The tectonic evolution of these domains during the Himalayan Orogeny is the consequence of a succession of five deformation events. An early D1 phase corresponds to synmetamorphic, NE verging folding. This deformation created the Tandi Syncline, which consists of Permian to Jurassic Tethyan metasediments cropping out in the core of a large-scale synformal fold within the HHC paragneiss. This tectonic event is interpreted as related to a NE directed nappe stacking (Shikar Beh Nappe), probably during the late Eocene to the early Oligocene. A subsequent D2a phase caused SW verging folding in the HHC. This deformation is interpreted as contemporaneous with late Oligocene to early Miocene SW directed thrusting along the Main Central Thrust. In the Tethyan Zone, a D2b phase is marked by a decollement thrust, a system of reverse faults, and gentle folds, associated with SW directed tectonic movements. This deformation is related to an imbricate structure, characteristic of a shallow structural level, and developed in the frontal part of a nappe affecting the Tethyan Zone units of SE Zanskar (Nyimaling-Tsarap Nappe). A later D3 phase generated the Chandra Dextral Shear Zone (CDSZ), a large-scale, ductile, dextral strike-slip shear zone, located in the transition zone between the HHC and the Tethyan Himalaya. The CDSZ most likely represents a part of a system of early Miocene extensional and/or dextral, strike-slip shear zones-observed at the HHC-Tethyan Zone contact along the entire Himalaya. A final D4 phase induced large-scale doming and NE:verging back folding.
Resumo:
We present an integrated work based on calcareous nannofossil and benthic foraminiferal assemblages, and geochemical analyses of two Upper Pliensbachian-Lower Toarcian sections located in the central-South France. The studied sections, Tournadous and Saint-Paul-des-Fonts, represent the proximal and the distal part, respectively, of the Jurassic Causses Basin, one of the small, partly enclosed basins belonging to the epicontinental shelf of the NW Tethys. At the transition from Late Pliensbachian to Early Toarcian, the Causses Basin recorded an emersion in response to the global sea-level fall. Our data indicate severe environmental conditions of marine waters, including salinity decrease and anoxia development, occurring in the Early Toarcian. The acme of this deterioration coincides with the Early Toarcian Anoxic Event (T-OAE) but, due to the restricted nature of the basin. anoxia persisted until the end of the Early Toarcian. mainly in the deeper parts of the basin. The micronutrients and organic organic-matter fluxes were probably high during the entire studied time interval, as shown by nannofossil and foraminiferal assemblages. However, nannoplankton production drastically decreased during the T-OAE, as demonstrated by very low nannofossil fluxes, and only taxa tolerant to low-saline surface waters could thrive. At the same time, benthic foraminifers temporarily disappeared in response to sea-bottom anoxia. Our study demonstrates that environmental changes related to the T-OAE are well-recorded even in small, partly enclosed basins of NW Europe, like the Causses Basin. Within this area, the effects of global changes. like sea sea-level and temperature fluctuations, are modulated by local conditions mainly controlled by the morphology of the basin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc-Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D-1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D-2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1-39.7 Ma Ar-40/Ar-39 mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The paleontological investigations of the Jurassic of Western Thailand, districts of Mae Sot (Tak-Mae Sot highway, Padaeng Tak and Ban Mae Kut Luang Zinc mines) and Umphang (Klo Tho), provide age constraints for the Late Indosinian orogeny, the Paleotethys closure and the timing of the marine Jurassic inundation of Sundaland. The basal conglomerate of the Jurassic is derived from the pelagic Triassic Mae Sariang substratum. Stratigraphy, microfacies and paleontology of the Jurassic marine strata focus especially on ammonites, bivalves, large benthic foraminifera and algae. Among ammonites, the Tethyan Catulloceras perisphinctoides Gemmellaro marks the Upper Toarcian (Aalensis Zone) along the Tak-Mae Sot highway and Riccardiceras longalvum (Vacek). Malladaites pertinax (Vacek), Abbasites sp. and Vacekia sp. indicate Middle Aalenian to lowermost Bajocian in the Padaeng Mine (SE of Mae Sot) and Klo-Tho (Umphang). Vacekia sp., Spinammatoceras schindewolfi Linares and Sandoval and Malladaites vaceki Linares and Sandoval indicate Middle Aalenian to lowermost Upper Aalenian at Ban Mae Kut Luang (NE of Mae Sot). Among foraminifers, the large benthic foraminifer Timidonella sarda Bassoullet, Chabrier and Fourcade in the Western Tethys is indicative for Aalenian-Bajocian times, as characterized in the section at the Tak-Padaeng Zinc mine and the Klo-Tho Formation near Umphang. The endemic foraminifer Gutnicella kaempferi characterizes the Pu Khloe Khi Formation near Umphang. Among bivalves, shallow marine, dominantly endemic fauna includes Parvamussium donaiense (Mansuy) and Bositra ornate (Quenstedt), from the Toarcian to the Early Bajocian. A consideration of the faunal affinity shows that the fauna is partly endemic with Northern Tethyan (Eurasian) affinity. Crown Copyright (C) 2010 Published by Elsevier B.V. on behalf of International Association for Gondwana Research. All rights reserved.