9 resultados para Uncertainty Management
em Université de Lausanne, Switzerland
Resumo:
1. Species distribution modelling is used increasingly in both applied and theoretical research to predict how species are distributed and to understand attributes of species' environmental requirements. In species distribution modelling, various statistical methods are used that combine species occurrence data with environmental spatial data layers to predict the suitability of any site for that species. While the number of data sharing initiatives involving species' occurrences in the scientific community has increased dramatically over the past few years, various data quality and methodological concerns related to using these data for species distribution modelling have not been addressed adequately. 2. We evaluated how uncertainty in georeferences and associated locational error in occurrences influence species distribution modelling using two treatments: (1) a control treatment where models were calibrated with original, accurate data and (2) an error treatment where data were first degraded spatially to simulate locational error. To incorporate error into the coordinates, we moved each coordinate with a random number drawn from the normal distribution with a mean of zero and a standard deviation of 5 km. We evaluated the influence of error on the performance of 10 commonly used distributional modelling techniques applied to 40 species in four distinct geographical regions. 3. Locational error in occurrences reduced model performance in three of these regions; relatively accurate predictions of species distributions were possible for most species, even with degraded occurrences. Two species distribution modelling techniques, boosted regression trees and maximum entropy, were the best performing models in the face of locational errors. The results obtained with boosted regression trees were only slightly degraded by errors in location, and the results obtained with the maximum entropy approach were not affected by such errors. 4. Synthesis and applications. To use the vast array of occurrence data that exists currently for research and management relating to the geographical ranges of species, modellers need to know the influence of locational error on model quality and whether some modelling techniques are particularly robust to error. We show that certain modelling techniques are particularly robust to a moderate level of locational error and that useful predictions of species distributions can be made even when occurrence data include some error.
Resumo:
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.
Resumo:
Biological reference points are important tools for fisheries management. Reference points are not static, but may change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting" reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true" reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary" reference points for spawning-stock biomass, Blim and Bpa, and the target reference point for fishing mortality, F0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamics.
Resumo:
The widespread use of abdominal imaging technologies has led to an increase in the incidental finding of liver tumors. Most of these lesions are asymptomatic and will not require any treatment. With the use of contrast-enhanced radiological studies, most of the tumors can be reliably diagnosed by non-invasive means. In case of diagnostic uncertainty, patients should not undergo percutaneous biopsy but rather complete resection of the lesion for an unequivocal diagnosis. Such pathologies must be taken charge of in centers with expertise by interdisciplinary teams.
Resumo:
The populations of Capercaillie (Tetrao urogallus), the largest European grouse, have seriously declined during the last century over most of their distribution in western and central Europe. In the Jura mountains, the relict population is now isolated and critically endangered (about 500 breeding adults). We developed a simulation software (TetrasPool) that accounts for age and spatial structure as well as stochastic processes, to perform a viability analysis and explore management scenarios for this population, capitalizing on a 24 years-long series of field data. Simulations predict a marked decline and a significant extinction risk over the next century, largely due to environmental and demographic stochasticity (average values of life-history parameters would otherwise allow stability). Variances among scenarios mainly stem from uncertainties about the shape and intensity of density dependence. Uncertainty analyses suggest to focus conservation efforts on enhancing, not only adult survival (as often advocated for long-lived species), but also recruitment. The juvenile stage matters when local populations undergo extinctions, because it ensures connectivity and recolonization. Besides limiting human perturbations, a silvicultural strategy aimed at opening forest structure should improve the quality and surface of available patches, independent of their size and localization. Such measures are to be taken urgently, if the population is to be saved.
Resumo:
This study deals with the psychological processes underlying the selection of appropriate strategy during exploratory behavior. A new device was used to assess sexual dimorphisms in spatial abilities that do not depend on spatial rotation, map reading or directional vector extraction capacities. Moreover, it makes it possible to investigate exploratory behavior as a specific response to novelty that trades off risk and reward. Risk management under uncertainty was assessed through both spontaneous searching strategies and signal detection capacities. The results of exploratory behavior, detection capacities, and decision-making strategies seem to indicate that women's exploratory behavior is based on risk-reducing behavior while men behavior does not appear to be influenced by this variable. This difference was interpreted as a difference in information processing modifying beliefs concerning the likelihood of uncertain events, and therefore influencing risk evaluation.
Resumo:
Managers can craft effective integrated strategy by properly assessing regulatory uncertainty. Leveraging the existing political markets literature, we predict regulatory uncertainty from the novel interaction of demand and supply side rivalries across a range of political markets. We argue for two primary drivers of regulatory uncertainty: ideology-motivated interests opposed to the firm and a lack of competition for power among political actors supplying public policy. We align three, previously disparate dimensions of nonmarket strategy - profile level, coalition breadth, and pivotal target - to levels of regulatory uncertainty. Through this framework, we demonstrate how and when firms employ different nonmarket strategies. To illustrate variation in nonmarket strategy across levels of regulatory uncertainty, we analyze several market entry decisions of foreign firms operating in the global telecommunications sector.
Resumo:
There remains uncertainty in scientific discussions regarding the governance of universities in new public management regimes in terms of who actually 'rules' in the university. Apparently, a strengthened management leadership is confronted with continuing elements of academic self-regulation and professional autonomy in knowledge production and diffusion. Organisational and academic rationales coexist in today's management of universities. This article endeavours to clarify some of the ambiguities pertaining to the coexistence of two authorities by demonstrating the working of 'interdependency management' that is taking place within universities. For this purpose, the authors have scrutinised research, teaching and recruitment policies in one Swiss university that is subject to such ambiguities. The study confirms existing research in that a command-and-control system is not applied. Policymaking in universities is instead based on a mix of negotiations in faculties that are taking place in the 'shadow of hierarchy', negotiated bargaining between faculties and leaders and occasional unilateral decisions of leaders. This mitigates latent conflicts between management and the academic community: strategic orientations of the university are generally accepted by the academic community while the academic community has influence on policy formulation and maintains defining powers over policy substance.
Resumo:
BACKGROUND: Uncertainty about the presence of infection results in unnecessary and prolonged empiric antibiotic treatment of newborns at risk for early-onset sepsis (EOS). This study evaluates the impact of this uncertainty on the diversity in management. METHODS: A web-based survey with questions addressing management of infection risk-adjusted scenarios was performed in Europe, North America, and Australia. Published national guidelines (n = 5) were reviewed and compared with the results of the survey. RESULTS: 439 Clinicians (68% were neonatologists) from 16 countries completed the survey. In the low-risk scenario, 29% would start antibiotic therapy and 26% would not, both groups without laboratory investigations; 45% would start if laboratory markers were abnormal. In the high-risk scenario, 99% would start antibiotic therapy. In the low-risk scenario, 89% would discontinue antibiotic therapy before 72 hours. In the high-risk scenario, 35% would discontinue therapy before 72 hours, 56% would continue therapy for 5-7 days, and 9% for more than 7 days. Laboratory investigations were used in 31% of scenarios for the decision to start, and in 72% for the decision to discontinue antibiotic treatment. National guidelines differ considerably regarding the decision to start in low-risk and regarding the decision to continue therapy in higher risk situations. CONCLUSIONS: There is a broad diversity of clinical practice in management of EOS and a lack of agreement between current guidelines. The results of the survey reflect the diversity of national guidelines. Prospective studies regarding management of neonates at risk of EOS with safety endpoints are needed.