5 resultados para Ultra-som transcuneal
em Université de Lausanne, Switzerland
Resumo:
The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.
Resumo:
Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.
Resumo:
INTRODUCTION: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes targeting of the ventro-intermediate nucleus of the thalamus (e.g. Vim) for tremor. We currently perform an indirect targeting, as the Vim is not visible on current 3Tesla MRI acquisitions. Our objective was to enhance anatomic imaging (aiming at refining the precision of anatomic target selection by direct visualisation) in patients treated for tremor with Vim GKS, by using high field 7T MRI. MATERIALS AND METHODSH: Five young healthy subjects were scanned on 3 (T1-w and diffusion tensor imaging) and 7T (high-resolution susceptibility weighted images (SWI)) MRI in Lausanne. All images were further integrated for the first time into the Gamma Plan Software(®) (Elekta Instruments, AB, Sweden) and co-registered (with T1 was a reference). A simulation of targeting of the Vim was done using various methods on the 3T images. Furthermore, a correlation with the position of the found target with the 7T SWI was performed. The atlas of Morel et al. (Zurich, CH) was used to confirm the findings on a detailed analysis inside/outside the Gamma Plan. RESULTS: The use of SWI provided us with a superior resolution and an improved image contrast within the basal ganglia. This allowed visualization and direct delineation of some subgroups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed on 3T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim-target area was created on the basis of the obtained images. CONCLUSION: This is the first report of the integration of SWI high field MRI into the LGP, aiming at the improvement of targeting validation of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g. quadrilatere of Guyot, histological atlases) seems to show a very good anatomical matching. Further studies are needed to validate this technique, both by improving the accuracy of the targeting of the Vim (potentially also other thalamic nuclei) and to perform clinical assessment.
Resumo:
The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details.