97 resultados para UHPLC-MS

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of testosterone abuse in sports is routinely achieved through the 'steroidal module' of the Athlete Biological Passport by GC-MS(/MS) quantification of selected endogenous anabolic androgenic steroids (EAAS) from athletes' urines. To overcome some limitations of the "urinary steroid profile" such as the presence of confounding factors (ethnicity, enzyme polymorphism, bacterial contamination, and ethanol), ultrahigh performance liquid chromatography (UHPLC) measurements of blood concentrations of testosterone, its major metabolites, and precursors could represent an interesting and complementary strategy. In this work, two UHPLC-MS/MS methods were developed for the quantification of testosterone and related compounds in human serum, including major progestogens, corticoids, and estrogens. The validated methods were then used for the analyses of serum samples collected from 19 healthy male volunteers after oral and transdermal testosterone administration. Results from unsupervised multiway analysis allowed variations of target analytes to be assessed simultaneously over a 96-h time period. Except for alteration of concentration values due to the circadian rhythm, which concerns mainly corticosteroids, DHEA, and progesterone, significant variations linked to the oral and transdermal testosterone administration were observed for testosterone, DHT, and androstenedione. As a second step of analysis, the longitudinal monitoring of these biomarkers using intra-individual thresholds showed, in comparison to urine, significant improvements in the detection of testosterone administration, especially for volunteers with del/del genotype for phase II UGT2B17 enzyme, not sensitive to the main urinary marker, T/E ratio. A substantial extension of the detection window after transdermal testosterone administration was also observed in serum matrix. The longitudinal follow-up proposed in this study represents a first example of 'blood steroid profile' in doping control analysis, which can be proposed in the future as a complement to the 'urinary module' for improving steroid abuse detection capabilities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A selective and sensitive method was developed for the simultaneous quantification of seven typical antipsychotic drugs (cis-chlorprothixene, flupentixol, haloperidol, levomepromazine, pipamperone, promazine and zuclopenthixol) in human plasma. Ultra-high performance liquid chromatography (UHPLC) was used for complete separation of the compounds in less than 4.5min on an Acquity UPLC BEH C18 column (2.1mm×50mm; 1.7μm), with a gradient elution of ammonium formate buffer pH 4.0 and acetonitrile at a flow rate of 400μl/min. Detection was performed on a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray ionization interface. A simple protein precipitation procedure with acetonitrile was used for sample preparation. Thanks to the use of stable isotope-labeled internal standards for all analytes, internal standard-normalized matrix effects were in the range of 92-108%. The method was fully validated to cover large concentration ranges of 0.2-90ng/ml for haloperidol, 0.5-90ng/ml for flupentixol, 1-450ng/ml for levomepromazine, promazine and zuclopenthixol and 2-900ng/ml for cis-chlorprothixene and pipamperone. Trueness (89.1-114.8%), repeatability (1.8-9.9%), intermediate precision (1.9-16.3%) and accuracy profiles (<30%) were in accordance with the latest international recommendations. The method was successfully used in our laboratory for routine quantification of more than 500 patient plasma samples for therapeutic drug monitoring. To the best of our knowledge, this is the first UHPLC-MS/MS method for the quantification of the studied drugs with a sample preparation based on protein precipitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclosporine A (CsA) has been demonstrated to be effective for the treatment of a variety of ophthalmological conditions, including ocular surface disorders such as the dry eye disease (DED). Since CsA is characterised by its low water solubility, the development of a topical ophthalmic formulation represents an interesting pharmaceutical question. In the present study, two different strategies to address this challenge were studied and compared: (i) a water-soluble CsA prodrug formulated within an aqueous solution and (ii) a CsA oil-in-water emulsion (Restasis, Allergan Inc., Irvine, CA). First, the prodrug formulation was shown to have an excellent ocular tolerance as well as no influence on the basal tear production; maintaining the ocular surface properties remained unchanged. Then, in order to allow in vivo investigations, a specific analytical method based on ultra high pressure liquid chromatography coupled with triple quadrupole mass spectrometer (UHPLC-MS/MS) was developed and optimised to quantify CsA in ocular tissues and fluids. The CsA ocular kinetics in lachrymal fluid for both formulations were found to be similar between 15 min and 48 h. The CsA ocular distribution study evidenced the ability of the prodrug formulation to penetrate into the eye, achieving therapeutically active CsA levels in tissues of both the anterior and posterior segments. In addition, the detailed analysis of the in vivo data using a bicompartmental model pointed out a higher bioavailability and lower elimination rate for CsA when it is generated from the prodrug than after direct application as an emulsion. The interesting in vivo properties displayed by the prodrug solution make it a safe and suitable option for the treatment of DED.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. DESIGN AND METHODS: Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. RESULTS: Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A highly sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of buprenorphine and its major metabolite norbuprenorphine in human plasma. In order to speed up the process and decrease costs, sample preparation was performed by simple protein precipitation with acetonitrile. To the best of our knowledge, this is the first application of this extraction technique for the quantification of buprenorphine in plasma. Matrix effects were strongly reduced and selectivity increased by using an efficient chromatographic separation on a sub-2μm column (Acquity UPLC BEH C18 1.7μm, 2.1×50mm) in 5min with a gradient of ammonium formate 20mM pH 3.05 and acetonitrile as mobile phase at a flow rate of 0.4ml/min. Detection was made using a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The procedure was fully validated according to the latest Food and Drug Administration guidelines and the Société Française des Sciences et Techniques Pharmaceutiques. Very good results were obtained by using a stable isotope-labeled internal standard for each analyte, to compensate for the variability due to the extraction and ionization steps. The method was very sensitive with lower limits of quantification of 0.1ng/ml for buprenorphine and 0.25ng/ml for norbuprenorphine. The upper limit of quantification was 250ng/ml for both drugs. Trueness (98.4-113.7%), repeatability (1.9-7.7%), intermediate precision (2.6-7.9%) and internal standard-normalized matrix effects (94-101%) were in accordance with international recommendations. The procedure was successfully used to quantify plasma samples from patients included in a clinical pharmacogenetic study and can be transferred for routine therapeutic drug monitoring in clinical laboratories without further development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The general strategy to perform anti-doping analysis starts with a screening followed by a confirmatory step when a sample is suspected to be positive. The screening step should be fast, generic and able to highlight any sample that may contain a prohibited substance by avoiding false negative and reducing false positive results. The confirmatory step is a dedicated procedure comprising a selective sample preparation and detection mode. Aim: The purpose of the study is to develop rapid screening and selective confirmatory strategies to detect and identify 103 doping agents in urine. Methods: For the screening, urine samples were simply diluted by a factor 2 with ultra-pure water and directly injected ("dilute and shoot") in the ultrahigh- pressure liquid chromatography (UHPLC). The UHPLC separation was performed in two gradients (ESI positive and negative) from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. The gradient analysis time is 9 min including 3 min reequilibration. Analytes detection was performed in full scan mode on a quadrupole time-of-flight (QTOF) mass spectrometer by acquiring the exact mass of the protonated (ESI positive) or deprotonated (ESI negative) molecular ion. For the confirmatory analysis, urine samples were extracted on SPE 96-well plate with mixed-mode cation (MCX) for basic and neutral compounds or anion exchange (MAX) sorbents for acidic molecules. The analytes were eluted in 3 min (including 1.5 min reequilibration) with a S1-25 Ann Toxicol Anal. 2009; 21(S1) Abstracts gradient from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. Analytes confirmation was performed in MS and MS/MS mode on a QTOF mass spectrometer. Results: In the screening and confirmatory analysis, basic and neutral analytes were analysed in the positive ESI mode, whereas acidic compounds were analysed in the negative mode. The analyte identification was based on retention time (tR) and exact mass measurement. "Dilute and shoot" was used as a generic sample treatment in the screening procedure, but matrix effect (e.g., ion suppression) cannot be avoided. However, the sensitivity was sufficient for all analytes to reach the minimal required performance limit (MRPL) required by the World Anti Doping Agency (WADA). To avoid time-consuming confirmatory analysis of false positive samples, a pre-confirmatory step was added. It consists of the sample re-injection, the acquisition of MS/MS spectra and the comparison to reference material. For the confirmatory analysis, urine samples were extracted by SPE allowing a pre-concentration of the analyte. A fast chromatographic separation was developed as a single analyte has to be confirmed. A dedicated QTOF-MS and MS/MS acquisition was performed to acquire within the same run a parallel scanning of two functions. Low collision energy was applied in the first channel to obtain the protonated molecular ion (QTOF-MS), while dedicated collision energy was set in the second channel to obtain fragmented ions (QTOF-MS/MS). Enough identification points were obtained to compare the spectra with reference material and negative urine sample. Finally, the entire process was validated and matrix effects quantified. Conclusion: Thanks to the coupling of UHPLC with the QTOF mass spectrometer, high tR repeatability, sensitivity, mass accuracy and mass resolution over a broad mass range were obtained. The method was sensitive, robust and reliable enough to detect and identify doping agents in urine. Keywords: screening, confirmatory analysis, UHPLC, QTOF, doping agents

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Differenzierung von Tinten erweist sich oft als wichtig in der Echtheitsprüfung von Dokumenten. Sie wird üblicherweise durch optische Vergleiche und Dünnschicht Chromatographie durchgeführt (TLC). Laser Desorption Ionisation Massenspektrometrie (LDI-MS) ist auch als nützlich gefunden worden und besonders leistungsfähig um Farbstoffe aus Kugelschreibertinte zu analysieren. Diese analytische Methode ist mit Hochleistungs Dünnschichtchromatografie TLC (HPTLC) verglichen worden, mit dem Ziel deren Tinten-Differenzierungskapazität zu testen. Tinteneinträge von 31 blauen Kugelschreibern sind analysiert worden und gemäß deren Farbstoffzusammensetzung klassifiziert worden. Typische Farbstoffe sind durch beide Methoden identifiziert worden und mehrere sind in vielen Tinten-Zusammensetzungen gefunden worden. LDI-MS ist leistungsfähiger als HPTLC um Tinten zu differenzieren, weil es Informationen über Farbstoffstrukturen (Molekular Gewicht) enthält und eine präzise relative Quantifizierung (Signalfläche) erlaubt. Dazu ist für LDI-MS Proben die Vorbereitung minimal und die Analysezeit kurz im Vergleich zu HPTLC mehr komplexen Schritte, wie Extraktionen, Spots Applikationen und Lösungsmittelelution. Allerdings sind mit LDI-MS zwei Analysen nötig um kationische und anionische Farbstoffe zu analysieren, während mit HPTLC nur eine Analyse nötig ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Infection with EBV and a lack in vitamin D may be important environmental triggers of MS. 1,25-(OH)2D3 mediates a shift of antigen presenting cells (APC) and CD4+ T cells to a less inflammatory profile. Although CD8+ T cells do express the vitamin D receptor, a direct effect of 1,25(OH)2D3 on these cells has not been demonstrated until now. Since CD8+ T cells are important immune mediators of the inflammatory response in MS, we examined whether vitamin D directly affects the CD8+ T cell response, and more specifically if it modulates the EBV-specific CD8+ T cell response. Material and Methods: To explore whether the vitamin D status may influence the pattern of the EBV-specific CD8+ T cell response, PBMC of 10 patients with early MS and 10 healthy controls (HC) were stimulated with a pool of immunodominant 8-10 mer peptide epitopes known to elicit CD8+ T cell responses. PBMC were stimulated with this EBV CD8 peptide pool, medium (negative control) or anti- CD3/anti-CD28 beads (positive control). The following assays were performed: ELISPOT to assess the secretion of IFN-gamma by T cells in general; cytometric beads array (CBA) and ELISA to determine whichcytokines were released by EBV-specific CD8+ T cells after six days of culture; and intracellular cytokine staining assay to determine by which subtype of T cells secreted given cytokines. To examine whether vitamin D could directly modulate CD8+ T cell immune responses, we depleted CD4+ T cells using negative selection. Results: We found that pre-treatment of vitamin D had an antiinflammatory action on both EBV-specific CD8+ T cells and on CD3/ CD28-stimulated T cells: secretion of pro-inflammatory cytokines (IFNgamma and TNF-alpha) was decreased, whereas secretion of antiinflammatory cytokines (IL-5 and TGF-beta) was increased. At baseline, CD8+ T cells of early MS patients showed a higher secretion of TNFalpha and lower secretion of IL-5. Addition of vitamin D did not restore the same levels of both cytokines as compared to HC. Vitamin D-pretreated CD8+T cells exhibited a decreased secretion of IFN-gamma and TNF-alpha, even after depletion of CD4+ T cells from culture. Conclusion: Vitamin D has a direct anti-inflammatory effect on CD8+ T cells independently from CD4+ T cells. CD8+ T cells of patients with earlyMS are less responsive to the inflammatory effect of vitamin D than HC, pointing toward an intrinsic dysregulation of CD8+ T cells. The modulation of EBV-specific CD8+T cells by vitaminDsuggests that there may be interplay between these twomajor environmental factors of MS. This study was supported by a grant from the Swiss National Foundation (PP00P3-124893), and by an unrestricted research grant from Bayer to RDP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.