122 resultados para Tronc cérébral
em Université de Lausanne, Switzerland
Resumo:
Contexte : La stimulation du nerf vague est une technique neurochirurgicale qui consiste en l'implantation d'une électrode envoyant des impulsions autours de celui-ci. Depuis l'approbation de la FDA en 1997 aux Etats-Unis, elle est utilisée chez certains patients épileptiques pharmaco-résistants et dont la chirurgie classique n'est pas envisageable [1], Par exemple lorsque qu'aucun foyer épileptique n'est identifiable, qu'une zone éloquente du cortex est atteinte ou encore qu'il y a de multiples points de départ. On parle généralement de patient « répondeur » lorsqu'une diminution de plus de 50% des crises est observée après l'opération. La proportion de patients répondeurs est estimée entre 20 à 50% [2], avec une action positive sur l'éveil [3]. Le mécanisme d'action de cette thérapie reste largement inconnu même si quelques ébauches d'hypothèses ont été formulées, notamment une action inhibitrice sur le noyau solitaire du nerf vague qui pourrait avoir comme effet de moduler des projections ascendantes diffuses via le locus coeruleus [3, 4]. Objectifs : Le but de ce travail est d'observer les effets de la stimulation du nerf vague sur le métabolisme cérébral et potentiellement d'élaborer des hypothèses sur le mécanisme d'action de ce traitement. Il faudra plus précisément s'intéresser au tronc cérébral, contenant le locus coeruleus (métabolisme de la noradrénaline) et aux noyaux du raphé (métabolisme de la sérotonine), deux neurotransmetteurs avec effet antiépileptique [5]. Le but sera également d'établir des facteurs prédictifs sur la façon de répondre d'un patient à partir d'une imagerie cérébrale fonctionnelle avant implantation, notamment au niveau du métabolisme cortical, particulièrement frontal (éveil) sera intéressant à étudier. Méthodes : Un formulaire d'information ainsi que de consentement éclairé sera remis à chaque patient avant inclusion dans l'étude. Les informations de chaque patient seront également inscrites dans un cahier d'observation (Case Report Form, CRF). Le travail s'organisera essentiellement sur deux populations. Premièrement, chez les patients déjà opérés avec un stimulateur en marche, nous réaliserons qu'une imagerie PET au F-18-fluorodeoxyglucose (FDG) post-opératoire qui seront comparés à une base de données de patients normaux (collaboration Dr E. Guedj, AP-HM, La Timone, Marseille). Nous confronterons également les images de ces patients entre elles, en opposant les répondeurs (diminution des crises de ≥50%) aux non-répondeurs. Deuxièmement, les patients non encore opérés auront un examen PET basal avant implantation et 3-6 mois après la mise en marche du stimulateur. Nous évaluerons alors les éventuelles modifications entre ces deux imageries PET, à la recherche de différences entre les répondeurs et non-répondeurs, ainsi que de facteurs prédictifs de bonne réponse dans l'imagerie de base. Toutes les comparaisons d'images seront effectuées grâce avec le programme d'analyse SPM08. Résultats escomptés : Nous espérons pouvoir mettre en évidence des modifications du métabolisme cérébral au FDG sur la base de ces différentes images. Ces constatations pourraient nous permettre de confirmer ou d'élargir les hypothèses physiologiques quant aux effets du traitement par stimulation vagale. Nous aimerions, de plus, amener à définir des facteurs prédictifs sur la façon de répondre d'un patient au traitement à l'aide du PET au F-18-FDG de départ avant implantation. Plus value escomptée : Ces résultats pourront donner des pistes supplémentaires quant au fonctionnement de la stimulation vagale chez les patients avec épilepsie réfractaire et servir de base à de nouvelles recherches dans ce domaine. Ils pourraient aussi donner des éléments pronostics avant l'implantation pour aider la sélection des patients pouvant bénéficier de ce type de thérapie.
Resumo:
Abstract : Expression of fear involves changes in a number of behavioral and physiological parameters that are triggered by the central amygdala (CeA). The fear circuit also includes a series of brain stem nuclei that are the final effectors of the changes induced by the fear reaction. The CeA expresses many different neuropeptide receptors that can modulate fear responses. Today, the precise organization and the modulation of projections from the amygdala to the brain stem are still poorly understood. The aim of this project was to better understand the organization and the modulation of the fear circuit. To investigate this we first determined whether the CeA is composed of separate neuronal populations, where each one projects to specific brain stem nuclei, or whether single CeA neurons project to several nuclei. For this purpose, we first selected two brain stem nuclei implicated in the modulation of different components of the fear reactions, the periaqueductal gray (implicated in freezing) and the nucleus of solitary tract (implicated in heart rate modulation). We then performed double injections of two different retrograde tracers in these two nuclei and we quantified the subsequent presence of co-labelling in the CeA. We found that neurons projecting to the PAG and to the NTS are organized in separate populations. Subsequent electrophysiological recordings of the two populations revealed that PAG and NTS projecting neurons also have different electrophysiological characteristics. We then verified in vitro whether the neurons projecting to different brain stem nuclei express specific combinations of neuropeptide receptors, and whether a neuropeptide acting pre-synaptically (oxytocin) specifically modulates one of these two projections. We did not find differences at the level of expression of neurópeptide receptors, but we observed that oxytocin, a neuropeptide with anxiolytic properties, modulates PAG projecting neurons without affecting NTS projecting neurons. As oxytocin appeared to specifically modulate projections to the PAG, involved in the modulation of the freezing reaction, but did not affect the projections to the NTS, implicated in the modulation of cardiovascular parameters, we verified how this modulation translates in living animals. We investigated the effects of infra-amygdala injection of oxytocin on cardiovascular and behavioral changes induced by contextual fear conditioning. We found that oxytocin decreased the freezing response without affecting the cardiovascular system. Finally, as neuropeptides are considered potential future anxiolytics, we investigated whether diazepam and oxytocin, acting on the same circuit, had additive effects. This question was addressed exclusively with an in vitro electrophysiological approach. We obtained that oxytocin and diazepam, when co-applied, had an additive effect on both synaptic transmission and neuronal activity. These results open new perspectives for the possible clinical applications of oxytocin. Résumé : L'expression de la peur est accompagnée par de nombreux changements physiologiques et comportementaux qui sont déclenchés par l'amygdale centrale (CeA). Le circuit inclue aussi une série de noyaux du tronc cérébrale qui sont les effecteurs des différentes composantes de la réaction de peur. On sait que CeA envoie des projections aux noyaux du tronc cérébral et que ces neurones expriment une grande variété de récepteurs aux neuropeptides. Par contre, l'organisation des projections, ainsi que la modulation de ces projections par les neuropeptides reste encore peu connue. Avec ce projet, on premièrement voulu déterminer si CeA est composée de populations neuronales séparées qui projettent vers un noyau spécifique, ou bien si chaque neurones envoie des projections vers plusieurs noyaux. A ce propos, on a effectué des doubles injections de deux traceurs rétrogrades différentes dans deux noyaux du tronc cérébral impliqués dans des différentes composantes des réactions de peur. On a injecté la substance grise périaqueducale (PAG), qui est impliquée dans la réponse d'immobilisation, ainsi que le noyau du tractus solitaire (NTS) qui est responsable des changements cardiovasculaires. On a ensuite quantifié la présence de neurones contenant les deux traceurs dans CeA. On a trouvé que la plupart des neurones de l'amygdale centrale projettent vers un noyau spécifique, et on peut donc dire que l'amygdale semble être composée de populations neuronales séparées. On a ensuite mesuré les caractéristiques électrophysiologiques de ces deux projections et on a trouvé des différences substantielles concernant la résistance membranaire, la capacitance, le potentiel membranaire de repos ainsi que la fréquence des potentiels d'action spontanés. Puis, comme beaucoup de neuropéptides dans l'amygdale exercent un effet modulatoire sûr les réactions de peur et sur l'anxiété, on a étudié les effets directs et indirects d'une série de neuropeptides sur les différentes projections pour évaluer s'il y a des neuropeptides qui agissent spécifiquement sur une. On n'a pas trouvé de différences entre neurones qui projettent vers le PAG et neurones qui projettent vers le NTS concernant les effets de neuropeptides qui agissent directement sur ces cellules. Par contre, on a trouvé que l'ocytocine, un neuropeptide qui se lie à des récepteurs dans la partie latérale de l'amygdale centrale et inhibe de façon indirecte les neurones de l'amygdala centrale médiale, module les projections vers le PAG sans affecter celles qui vont vers le NTS. Comme le PAG est impliqué dans la réponse d'immobilisation, alors que le NTS est impliqué dans la modulation cardiovasculaire, on a ensuite étudié les effets de l'ocytocine injectée dans l'amygdale de rat vivants sur les réactions de peur conditionnées. On a trouvé que l'ocytocine diminue la réponse d'immobilisation sans par contre affecter la réponse cardiovasculaire. Pour terminer, on a vérifié si l'ocytocine potentialise les effets d'un médicament anxiolytique, le diazeparn. Avec une étude in vitro on a trouvé qu'une co-application d'ocytocine et diazeparn résulte en un effet additionnel à la fois sur la transmission synaptique ainsi que sur l'activité neuronale des neurones de l'amygdale centrale médiale. Ces résultats ouvrent des nouvelles perspectives pour une potentielle utilisation clinique de l'ocytocine.
Resumo:
Résumé Les rongeurs utilisent leurs moustaches (vibrisses) pour explorer le milieu environnant. Chaque moustache est mue par un système des muscles. Les récepteurs situés à sa base transmettent les informations au système nerveux central. La transmission vers l'écorce se fait via trois neurones de relais qui se trouvent au niveau du ganglion trigéminé, du tronc cérébral et du thalamus. La représentation corticale d'une vibrisse est une concentration des axones thalamo-corticaux (ATC) autour desquelles s'organisent leurs cibles, les cellules de la couche IV. La structure peut être identifiée histologiquement en coupes tangentielles et porte le nom de « barrel » (« tonneau »). Cette correspondance vibrisse - barrel fait de ce système un model idéal pour étudier l'influence de l'activité périphérique sur l'établissement et le maintien des cartes somatotopiques. Notre laboratoire dispose d'une souche de souris qui a subi une mutation spontanée pour le gène codant l'adenylyl cyclase I (ACI). Cette enzyme membranaire catalyse la formation de l'AMPc et joue un rôle important dans le guidage axonal, la libération des neurotransmetteurs et l'intégration des signaux postsynaptiques. Nous avons démontré dans un premier temps que cette souris adulte ne développe pas de barrels. Cela est dû à un manque d'organisation des ATC et aussi des cellules de la couche IV. De plus, les résultats électrophysiologiques montrent que les informations venant des vibrisses adjacentes ne sont pas intégrées d'une manière normale. Dans ce travail de thèse, j'ai analysé la morphologie des ATC révélés individuellement avec de la biocytine. L'analyse quantitative des ATC a mis en évidence les points suivants: 1. Les axones de la souris normale (NOR) quittent le thalamus, traversent la capsule interne et la substance blanche sous-corticale et pénètrent dans le cortex somato-sensoriel primaire. A l'intérieur de l'écorce ils traversent au maximum 3 colonnes corticales adjacentes dont une contient le barrel cible. En passant à travers les couches VI et V, ces axones arborisent et convergent progressivement vers le barrel dans lequel ils forment une riche arborisation. Un petit nombre des branches « errantes », pleines de boutons synaptiques, pénètrent dans les barrels voisins. Deux axones NOR provenant de corps cellulaires très proches dans le thalamus peuvent avoir un cheminement très divergent lors de la traversée de la capsule interne et de la substance blanche sous-corticale mais, à leur entrée dans le cortex, ils sont distants d'au maximum 2 colonnes corticales de la colonne qui contient le barrel cible et ils convergent progressivement vers ce barrel. 2. Les axones de la souris mutante (BRL) ont le même trajet sous-cortical que les axones NOR, mais leur entrée dans le cortex somato-sensoriel primaire est aléatoire. A l'interface entre la substance blanche sous-corticale et le cortex, l'axone principal se divise rapidement en troncs axonaux qui traversent les couches VI et V d'une manière divergente pour arriver dans la couche IV. Cela contraste beaucoup avec la trajectoire des NOR qui convergent graduellement vers leur barrel cible. Le nombre de branches radiales que les axones BRL utilisent pour entrer dans le cortex et dans la couche IV est double par rapport aux axones NOR. Parmi ces branches, seules quelques-unes donnent des arborisations, les autres ne sont pas développées et leur morphologie est semblable à celle des branches formées par les axones de la souris normale lors du développement. Deux axones BRL issus de corps cellulaires proches dans le thalamus peuvent avoir une trajectoire très divergente jusqu'à leur entrée dans la couche IV, mais à ce niveau ils sont réorientés pour se retrouver et faire un nombre maximal de branches et boutons synaptiques dans la même région corticale. Dans un cas extrême, un des axones observés est entré dans le cortex à la limite entre l'aire somatosensorielle primaire et secondaire et a parcouru une distance de 2 mm pour retrouver son partenaire thalamique et donner avec celui-ci un nombre maximal de branches dans la même région de la couche IV. 3. Les mesures quantitatives ont montré que les arborisations corticales des axones NOR ont une longueur moyenne de 18mm et sont formées par 200 segments qui portent 1200 boutons synaptiques. Par rapport à la souris NOR, les axones BRL ont en moyenne la même longueur, le même nombre de segments et boutons synaptiques, mais donnent deux fois plus de branches radiales. La surface tangentielle occupée par les arborisations BRL dans la couche IV est 2 fois plus grande que celle des NOR. Cela signifie que les 1000 boutons synaptiques qui caractérisent les arborisations NOR et BRL dans la couche IV sont disséminés sur une surface tangentielle double chez les derniers, et donc que la densité des boutons par unité de surface corticale est en moyenne plus faible. En effet, l'augmentation de la surface corticale tangentielle des BRL est due aux surfaces de faible et moyenne densité synaptique (0 - 8 boutons / 400pn2) qui augmentent 2 fois tandis que les surfaces de haute densité synaptiques (8 - 64 boutons / 4001.tm2) sont les mêmes. Nous émettons l'hypothèse selon laquelle, durant le développement, les ATC de la souris BRL divergent et forment un nombre exubérant de branches. Grâce à cette divergence et aux branches supranuméraires, ils trouvent l'endroit de l'écorce où se trouvent leurs voisins thalamiques et arborisent abondamment dans cette région. Cependant, le déficit en AGI ne leurs permet pas par la suite, sous influence de l'activité périphérique, de retirer les branches qui se trouvent dans les endroits inappropriés de l'écorce, avec de possibles conséquences sur la discrimination tactile.
Resumo:
Le trémor oculo-palatin (TOP) est une complication tardive et rare faisant suite à une lésion au niveau du tronc cérébral. Il est caractérisé par des contractions involontaires du voile du palais (pratiquement toujours asymptomatique), synchronisées avec un nystagmus pendulaire à environ 2 Hz (toujours symptomatique, se manifestant par des oscillopsies). Un hypersignal du noyau de l'olive inférieure (HNOI) est visible en IRM ; l'HNOI persiste au fil des ans. Notre objectif était de mieux définir le profil clinique des patients avec un TOP. Pour ceci nous avons effectué une étude rétrospective de 8 patients présentant un TOP et avons compilé ces résultats avec les 82 cas que nous avons retrouvé dans la littérature mondiale (revue PubMed). L'âge moyen était de 54 ans, avec une prédominance masculine. L'étiologie la plus fréquente était une lésion vasculaire du tronc cérébral (80%). Un nystagmus pendulaire principalement vertical a été retrouvé dans 90% des cas. Un nystagmus dissocié était principalement associé à une HNOI controlatérale et unilatérale sur l'IRM. Un nystagmus bilatéral et symétrique résultait d'une HNOI bilatérale dans la majorité des cas. Trois singularités ont été retrouvées parmi nos 8 patients : 1) une HNOI ipsilatérale à un nystagmus dissocié ; 2) la persistance du nystagmus en cas de disparition de l'HNOI ; 3) la découverte d'un micronystagmus asymptomatique. Le profil clinique du TOP reste assez stéréotypé, malgré quelques variations possibles (cf nos trois singularités). Les oscillopsies sont parfois handicapantes et il n'existe pas à ce jour de traitement spécifique du TOP.
Resumo:
Enjeu et contexte de la recherche La dégénérescence lobaire fronto-temporale (DLFT) est une pathologie neurodégénérative aussi fréquente que la maladie d'Alzheimer parmi les adultes de moins de 65 ans. Elle recouvre une constellation de syndromes neuropsychiatriques et moteurs dont les caractéristiques cliniques et anatomo-pathologiques se recoupent partiellement. La plupart des cas de démence sémantique ne présentent pas de troubles moteurs et révèlent à l'autopsie des lésions ubiquitine-positives. Son association à un syndrome cortico-basal et à une tauopathie 4R est donc très inhabituelle. Le cas que nous présentons est le premier à disposer d'une description clinique complète, tant sur le plan cognitif que moteur, et d'une analyse génétique et histopathologique. Résumé de l'article Il s'agit d'un homme de 57 ans, sans antécédents familiaux, présentant une démence sémantique accompagnée de symptômes inhabituels dans ce contexte, tels qu'une dysfonction exécutive et en mémoire épisodique, une désorientation spatiale et une dyscalculie. Le déclin physique et cognitif fut rapidement progressif. Une année et demie plus tard, il développait en effet des symptômes moteurs compatibles initialement avec un syndrome de Richardson, puis avec un syndrome cortico-basal. Son décès survint à l'âge de 60 ans des suites d'une pneumonie sur broncho-aspiration. L'autopsie cérébrale mit en évidence une perte neuronale et de nombreuses lésions tau-4R-positives dans les lobes frontaux, pariétaux et temporaux, les ganglions de la base et le tronc cérébral. Aucune mutation pathologique n'a été décelée dans le gène MAPT (microtubule-associated protein tau). L'ensemble de ces éléments sont discutés dans le cadre des connaissances actuelles sur la DLFT. Conclusions et perspectives Ce cas illustre le recoupement important des différents syndromes de la DLFT, parfois appelée le « complexe de Pick ». De plus, la démence sémantique pourrait s'avérer cliniquement moins homogène que prévu. Les définitions actuelles de la démence sémantique omettent la description des symptômes cognitifs extra-sémantiques malgré l'accumulation de preuves de leur existence. La faible prévalence de la démence sémantique, ainsi que des différences dans les examens neuropsychologiques, peuvent expliquer en partie la raison de cette omission. La variabilité histopathologique de chaque phénotype de DLFT peut également induire des différences dans leur expression clinique. Dans un domaine aussi mouvant que la DLFT, la co- occurrence ou la succession de plusieurs syndromes cliniques est en outre probablement la règle plutôt que l'exception.
Resumo:
Abstract The amygdala is a group of nuclei in the temporal lobe of the brain that plays a crucial role in anxiety and fear behavior. Sensory information converges in the basolateral and lateral nuclei of the amygdala, which have been the first regions in the brain where the acquisition of new (fear) memories has been associated with long term changes in synaptic transmission. These nuclei, in turn, project to the central nucleus of the amygdala. The central amygdala, through its extensive projections to numerous nuclei in the midbrain and brainstem, plays a pivotal role in the orchestration of the rapid autonomic and endocrine fear responses. In the central amygdala a large number of neuropeptides and receptors is expressed, among which high levels of vasopressin and oxytocin receptors. Local injections of these peptides into the amygdala modulate several aspects of the autonomic fear reaction. Interestingly, their effects are opposing: vasopressin tends to enhance the fear reactions, whereas oxytocin has anxiolytic effects. In order to investigate the neurophysiological mechanisms that could underlie this opposing modulation of the fear behavior, we studied the effects of vasopressin and oxytocin on the neuronal activity in an acute brain slice preparation of the rat central amygdala. We first assessed the effects of vasopressin and oxytocin on the spontaneous activity of central amygdala neurons. Extracellular single unit recordings revealed two major populations of neurons: a majority of neurons was excited by vasopressin and inhibited by oxytocin, whereas other neurons were only excited by oxytocin receptor activation. The inhibitory effect of oxytocin could be reduced by the block of GABAergic transmission, whereas the excitatory effects of vasopressin and oxytocin were not affected. In a second step we identified the cellular mechanisms for the excitatory effects of both peptides as well as the morphological and biochemical mechanisms underlying the opposing effects, by using sharp electrode recordings together with intracellular labelings. We revealed that oxytocin-excited neurons are localized in the lateral part (CeL) whereas vasopressin excited cells are found in the medial part of the central amygdala (CeM). The tracing of the neuronal morphology showed that the axon collaterals of the oxytocin-excited neurons project from the CeL, far into the CeM. Combined immunohistochemical stainings indicated that these projections are GABAergic. In the third set of experiments we investigated the synaptic interactions between the two identified cell populations. Whole-cell patch-clamp recordings in the CeM revealed that the inhibitory effect of oxytocin was caused by the massive increase of inhibitory GABAergic currents, which was induced by the activation of CeL neurons. Finally, the effects of vasopressin and oxytocin on evoked activity were investigated. We found on the one hand, that the probability of evoking action potentials in the CeM by stimulating the basolateral amygdala afferents was enhanced under vasopressin, whereas it decreased under oxytocin. On the other hand, the impact of cortical afferents stimulation on the CeL neurons was enhanced by oxytocin application. Taken together, these findings have allowed us to develop a model, in which the opposing behavioral effects of vasopressin and oxytocin are caused by a selective activation of two distinct populations of neurons in the GABAergic network of the central amygdala. Our model could help to develop new anxiolytic treatments, which modulate simultaneously both receptor systems. By acting on a GABAergic network, such treatments can further be tuned by combinations with classical benzodiazepines. Résumé: L'amygdale est un groupe de noyaux cérébraux localisés dans le lobe temporal. Elle joue un rôle essentiel dans les comportements liés à la peur et l'anxiété. L'information issue des aires sensorielles converge vers les noyaux amygdaliens latéraux et basolatéraux, qui sont les projections vers différents noyaux du tronc cérébral et de l'hypothalamus, joue un rôle clef premières régions dans lesquelles il a été démontré que l'acquisition d'une nouvelle mémoire (de peur) était associée à des changements à long terme de la transmission synaptique. Ces noyaux envoient leurs projections sur l'amygdale centrale, qui à travers ses propres dans l'orchestration des réponses autonomes et endocrines de peur. Le contrôle de l'activité neuronale dans l'amygdale centrale module fortement la réaction de peur. Ainsi, un grand nombre de neuropeptides sont spécifiquement exprimés dans l'amygdale centrale et un bon nombre d'entre eux interfère dans la réaction de peur et d'anxiété. Chez les rats, une forte concentration de récepteurs à l'ocytocine et à la vasopressine est exprimée dans le noyau central, et l'injection de ces peptides dans l'amygdale influence différents aspects de la réaction viscérale associée à la peur. Il est intéressant de constater que ces peptides exercent des effets opposés. Ainsi, la vasopressine augmente la réaction de peur alors que l'ocytocine a un effet anxiolytique. Afin d'investiguer les mécanismes neurophysiologiques responsables de ces effets opposés, nous avons étudié l'effet de la vasopressine et de l'ocytocine sur l'activité neuronale de préparations de tranches de cerveau de rats contenant entre autres de l'amygdale centrale. Tout d'abord, notre intérêt s'est porté sur les effets de ces deux neuropeptides sur l'activité spontanée dans l'amygdale centrale. Des enregistrements extracellulaires ont révélé différentes populations de neurones ; une majorité était excitée par la vasopressine et inhibée par l'ocytocine ; d'autres étaient seulement excités par l'activation du récepteur à l'ocytocine. L'effet inhibiteur de l'ocytocine a pu être réduit par l'inhibition de la transmission GABAergique, alors que ses effets excitateurs n'étaient pas affectés. Dans un deuxième temps, nous avons identifié les mécanismes cellulaires responsables de l'effet excitateur de ces deux peptides et analysé les caractéristiques morphologiques et biochimiques des neurones affectés. Des enregistrements intracellulaires ont permis de localiser les neurones excités par l'ocytocine dans la partie latérale de l'amygdale centrale (CeL), et ceux excités par la vasopressine dans sa partie médiale (CeM). Le traçage morphologique des neurones a révélé que les collatérales axonales des cellules excitées par l'ocytocine projetaient du CeL loin dans le CeM. De plus, des colorations immuno-histochimiques ont révélé que ces projections étaient GABAergiques. Dans un troisième temps, nous avons étudié les interactions synaptiques entre ces deux populations de cellules. Les enregistrements en whole-cell patch-clamp dans le CeM ont démontré que les effets inhibiteurs de l'ocytocine résultaient de l'augmentation massive des courants GABAergique résultant de l'activation des neurones dans le CeL. Finalement, les effets de l'ocytocine et de la vasopressine sur l'activité évoquée ont été étudiés. Nous avons pu montrer que la probabilité d'évoquer un potentiel d'action dans le CeM, par stimulation de l'amygdale basolatérale, était augmentée sous l'effet de la vasopressine et diminuée sous l'action de l'ocytocine. Par contre, l'impact de la stimulation des afférences corticales sur les neurones du CeL était augmenté par l'application de l'ocytocine. L'ensemble de ces résultats nous a permis de développer un modèle dans lequel les effets comportementaux opposés de la vasopressine et de l'ocytocine sont causés par une activation sélective des deux différentes populations de neurones dans un réseau GABAergique. Un tel modèle pourrait mener au développement de nouveaux traitements anxiolytiques en modulant l'activité des deux récepteurs simultanément. En agissant sur un réseau GABAergique, les effets d'un tel traitement pourraient être rendus encore plus sélectifs en association avec des benzodiazépines classiques.
Resumo:
ABSTRACT Adult neuronal plasticity is a term that corresponds to a set of biological mechanisms allowing a neuronal circuit to respond and adapt to modifications of the received inputs. Mystacial whiskers of the mouse are the starting point of a major sensory pathway that provides the animal with information from its immediate environment. Through whisking, information is gathered that allows the animal to orientate itself and to recognize objects. This sensory system is crucial for nocturnal behaviour during which vision is not of much use. Sensory information of the whiskers are sent via brainstem and thalamus to the primary somatosensory area (S1) of the cerebral cortex in a strictly topological manner. Cell bodies in the layer N of S 1 are arranged in ring forming structures called barrels. As such, each barrel corresponds to the cortical representation in layer IV of a single whisker follicle. This histological feature allows to identify with uttermost precision the part of the cortex devoted to a given whisker and to study modifications induced by different experimental conditions. The condition used in the studies of my thesis is the passive stimulation of one whisker in the adult mouse for a period of 24 hours. It is performed by glueing a piece of metal on one whisker and placing the awake animal in a cage surrounded by an electromagnetic coil that generates magnetic field burst inducing whisker movement at a given frequency during 24 hours. I analysed the ultrastructure of the barrel corresponding the stimulated whisker using serial sections electron microscopy and computer-based three-dimensional reconstructions; analysis of neighbouring, unstimulated barrels as well as those from unstimulated mice served as control. The following elements were structurally analyzed: the spiny dendrites, the axons of excitatory as well as inhibitory cells, their connections via synapses and the astrocytic processes. The density of synapses and spines is upregulated in a barrel corresponding to a stimulated whisker. This upregulation is absent in the BDNF heterozygote mice, indicating that a certain level of activity-dependent released BDNF is required for synaptogenesis in the adult cerebral cortex. Synpaptogenesis is correlated with a modification of the astrocytes that place themselves in closer vicinity of the excitatory synapses on spines. Biochemical analysis revealed that the astrocytes upregulate the expression of transporters by which they internalise glutamate, the neurotransmitter responsible for the excitatory response of cortical neurons. In the final part of my thesis, I show that synaptogenesis in the stimulated barrel is due to the increase in the size of excitatory axonal boutons that become more frequently multisynaptic, whereas the inhibitory axons do not change their morphology but form more synapses with spines apposed to them. Taken together, my thesis demonstrates that all the cellular elements present in the neuronal tissue of the adult brain contribute to activity-dependent cortical plasticity and form part of a mechanism by which the animal responds to a modified sensory experience. Throughout life, the neuronal circuit keeps the faculty to adapt its function. These adaptations are partially transitory but some aspects remain and could be the structural basis of a memory trace in the cortical circuit. RESUME La plasticité neuronale chez l'adulte désigne un ensemble de mécanismes biologiques qui permettent aux circuits neuronaux de répondre et de s'adapter aux modifications des stimulations reçues. Les vibrisses des souris sont un système crucial fournissant des informations sensorielles au sujet de l'environnement de l'animal. L'information sensorielle collectée par les vibrisses est envoyée via le tronc cérébral et le thalamus à l'aire sensorielle primaire (S 1) du cortex cérébral en respectant strictement la somatotopie. Les corps cellulaires dans la couche IV de S 1 sont organisés en anneaux délimitant des structures nommées tonneaux. Chaque tonneau reçoit l'information d'une seule vibrisse et l'arrangement des tonneaux dans le cortex correspond à l'arrangement des vibrisses sur le museau de la souris. Cette particularité histologique permet de sélectionner avec certitude la partie du cortex dévolue à une vibrisse et de l'étudier dans diverses conditions. Le paradigme expérimental utilisé dans cette thèse est la stimulation passive d'une seule vibrisse durant 24 heures. Pour ce faire, un petit morceau de métal est collé sur une vibrisse et la souris est placée dans une cage entourée d'une bobine électromagnétique générant un champ qui fait vibrer le morceau de métal durant 24 heures. Nous analysons l'ultrastructure du cortex cérébral à l'aide de la microscopie électronique et des coupes sériées permettant la reconstruction tridimensionnelle à l'aide de logiciels informatiques. Nous observons les modifications des structures présentes : les dendrites épineuses, les axones des cellules excitatrices et inhibitrices, leurs connections par des synapses et les astrocytes. Le nombre de synapses et d'épines est augmenté dans un tonneau correspondant à une vibrisse stimulée 24 heures. Basé sur cela, nous montrons dans ces travaux que cette réponse n'est pas observée dans des souris hétérozygotes BDNF+/-. Cette neurotrophine sécrétée en fonction de l'activité neuronale est donc nécessaire pour la synaptogenèse. La synaptogenèse est accompagnée d'une modification des astrocytes qui se rapprochent des synapses excitatrices au niveau des épines dendritiques. Ils expriment également plus de transporteurs chargés d'internaliser le glutamate, le neurotransmetteur responsable de la réponse excitatrice des neurones. Nous montrons aussi que les axones excitateurs deviennent plus larges et forment plus de boutons multi-synaptiques à la suite de la stimulation tandis que les axones inhibiteurs ne changent pas de morphologie mais forment plus de synapses avec des épines apposées à leur membrane. Tous les éléments analysés dans le cerveau adulte ont maintenu la capacité de réagir aux modifications de l'activité neuronale et répondent aux modifications de l'activité permettant une constante adaptation à de nouveaux environnements durant la vie. Les circuits neuronaux gardent la capacité de créer de nouvelles synapses. Ces adaptations peuvent être des réponses transitoires aux stimuli mais peuvent aussi laisser une trace mnésique dans les circuits.
Resumo:
AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.
Resumo:
L'encéphalopathie post-anoxique après arrêt cardiaque (AC) est une cause féquente d'admission pour coma en réanimation. Depuis les recommandations de 2003, l'hypothermie thérapeutique (HT) est devenue un standard de traitement après AC et est à l'origine de l'amélioration du pronostic au cours de cette derniere décennie. Les élements prédicteurs de pronostic validés par l'Académie Américaine de Neurologie avant l'ère de l'HT sont devenus moins précis. En effet, l'HT et la sédation retardent la reprise de la réponse motrice et peuvent altérer la valeur prédictive des réflexes du tronc cérébral. Une nouvelle approche est nécessaire pour établir un pronostic après AC et HT. L'enregistrement (pendant l'HTou peu après) d'une activité électroencéphalographique réactive et/ou continue est un bon prédicteur de récupération neurologique favorable après AC. Au contraire, la présence d'un tracé non réactif ou discontinu de type burst-suppression, avec une réponse N20 absente bilatérale aux potentiels évoqués somatosensoriels, sont presqu'à 100 % prédictifs d'un coma irréversible déjà à 48 heures après AC. L'HT modifie aussi la valeur prédictive de l'énolase neuronale spécifique (NSE), principal biomarqueur sérique de la lésion cérébrale post-anoxique. Un réveil avec bonne récupération neurologique a été récemment observé par plusieurs groupes chez des patients présentant des valeurs de NSE>33 μg/L à 48-72 heures : ce seuil ne doit pas être utilisé seul pour guider le traitement. L'imagerie par résonance magnétique de diffusion peut aider à prédire les séquelles neurologiques à long terme. Un réveil chez les patients en coma post-anoxique est de plus en plus observé, malgré l'absence précoce de signes moteurs et une élévation franche des biomarqueurs neuronaux. En 2014, une nouvelle approche multimodale du pronostic est donc nécessaire, pour optimiser la prédiction d'une évolution clinique favorable après AC. Hypoxic-ischemic encephalopathy after cardiac arrest (CA) is a frequent cause of intensive care unit (ICU) admission. Incorporated in all recent guidelines, therapeutic hypothermia (TH) has become a standard of care and has contributed to improve prognosis after CA during the past decade. The accuracy of prognostic predictors validated in 2006 by the American Academy of Neurology before the era of TH is less accurate. Indeed, TH and sedation may delay the recovery of motor response and alter the predictive value of brainstem reflexes. A new approach is needed to accurately establish prognosis after CA and TH. A reactive and/or continuous electroencephalogram background (during TH or shortly thereafter) strongly predicts good outcome. On the contrary, unreactive/spontaneous burst-suppression electroencephalogram pattern, together with absent N20 on somatosensory evoked potentials, is almost 100% predictive of irreversible coma. TH also affects the predictive value of neuronspecific enolase (NSE), the main serum biomarker of postanoxic injury. A good outcome can occur despite NSE levels >33 μg/L, so this cutoff value should not be used alone to guide treatment. Diffusion magnetic resonance imagery may help predict long-term neurological sequelae. Awakening from postanoxic coma is increasingly observed, despite the absence of early motor signs and pathological elevation of NSE. In 2014, a multimodal approach to prognosis is recommended to optimize the prediction of outcome after CA.
Resumo:
Introduction 1.1 Le sujet cérébral, rencontre entre le biologique et le social L'objectif de ce travail est d'éclairer une des voies par lesquelles le phénomène anthropologique de l'individualité prend corps au sein de l'environnement contemporain. L'individualisme est compris comme les divers processus par lesquels la détermination du sujet tend à s'autonomiser des appartenances préconstituées. Il est la forme sociologique qui gouverne la façon contemporaine de faire société depuis l'avènement de la «modernité ». Le choix de l'angle de la cérébralité pour aborder la question de recherche repose sur le postulat qu'une des particularités culturelles de la figure du sujet individuel contemporain est la tendance à attribuer aux mécanismes cérébraux le rôle déterminant dans la constitution de la subjectivité du sujet. Dès lors, si aujourd'hui, penser le cerveau c'est penser l'humain, il s'agit d'un phénomène anthropologique qui demande à être explicité. Il m'appartient de démontrer que le champ des neurosciences se profile comme révélateur privilégié pour observer comment penser l'individualité concorde avec l'établissement de vérités relatives au cérébral' . Faire l'anthropologie du proche et de l'actuel a ses intérêts mais comporte aussi des risques. La perte de ce qui faisait le moteur de la recherche anthropologique -l'altérité donnée des sujets de son observation - a été compensée par l'émergence de nouveaux objets de travail et par des reconfigurations des rapports que l'anthropologue entretient avec son terrain. Le renouvellement du cadre de réflexion opéré par l'anthropologie au cours du siècle écoulé suit les transformations des pratiques sociales, culturelles et économiques qui s'opèrent au niveau mondial. L'échelle désormais planétaire de la circulation des acteurs sociaux et des objets de savoir a forcé la discipline à revoir la grille de lecture qui a longtemps opposé sociétés traditionnelles à sociétés modernes. La prise de conscience de la caducité du grand partage a engagé les anthropologues à s'intéresser à des phénomènes en rapport avec des problèmes rencontrés au sein de leur propre collectif et, dans le même mouvement, les a amenée à repenser les articulations entre le global et le local, le particulier et l'universel. Le bouleversement heuristique généré par ce repositionnement n'est toutefois pas exempt de nouvelles difficultés pour la recherche ethnographique. En se posant le défi d'étudier des traits culturels propres à sa société d'appartenance, l'anthropologie s'ouvre à des terrains enquête sur la façon dont, dans le monde occidental, le constat toujours plus pesant de la discordance entre les phénomènes de vieillissement cognitif et l'allongement de l'espérance de vie est traité. Dans une démarche ethnographique, il s'agit de voir quelles sont les logiques d'action et les pratiques sociales développées en réponse à ces inadéquations. La thématique impose une navigation entre des domaines théoriques spécialisés et des champs d'activités possédant chacun leurs cadres de référence. Une telle entreprise suppose une multiplication des systèmes de référence devant être pris en compte. Toutes les disciplines approchées au cours de ce travail abondent en métaphores utiles à la mise en ordre de leur pensée et à la description de leurs objets de travail. Toutefois, faire résonner entre elles les différentes «cultures épistémiques » (Knorr-Cetina, 1999) pour mieux faire apparaître la trame sociale qui constitue leur arrière-fond équivaut souvent à forcer le trait. Le sens des mots varie selon leurs champs d'application et l'exercice de la mise en résonance peut s'avérer périlleux. Je me suis efforcée tout au long de ces pages de préciser de quel point de vue les énoncés considérés sont formulés. L'analyse anthropologique étant guidée par la recherche des points de liaison entre les différents registres, la démarche est forcément limitée dans le niveau d'approfondissement auquel elle peut tendre. Elle risque de décevoir les lecteurs experts dans les domaines soumis à la grille de lecture de cette discipline, non familiers avec les concepts anthropologiques. Il est probable qu'un certain flou subsiste dans la façon dont ces énoncés sont décris par rapport au traitement dont ils sont l'objet dans leurs disciplines respectives. Si on perd de vue la préoccupation centrale de l'anthropologie, consistant à éclairer le système de valeurs commun sous-tendant les pratiques sociales observées, la lecture d'un tel travail risque effectivement de rater son but. En revanche, en acceptant d'emblée de se prêter à un décentrement par rapport à son modèle disciplinaire, le lecteur doit pouvoir appréhender des aspects intéressant ses propres pratiques. S'intéresser à ce qui relie les savoirs et les pratiques au sein d'un monde commun, voilà un programme heuristique qui va à l'encontre de la logique de spécialisation.
Resumo:
Thrombolysis administered intravenously within 3 hours (or within 6 hours intra-arterially) after symptoms onset improves the functional outcome of acute ischemic stroke patients. In Switzerland this treatment is only performed by specialized centers. At the level of a community hospital or a general practitioner, the management is based on the appropriate selection of patients in whom thrombolysis could be indicated, followed by their immediate transfer to a reference medical center. Because of the very short therapeutic window, specific criteria have to be used. We present the guidelines of Les Cadolles Hospital in Neuchâtel established in collaboration with the Department of Neurology of the University Hospital of Lausanne and a retrospective analysis of emergency admissions for suspected stroke at Les Cadolles between January 1st 2001 and December 31st 2002.
Resumo:
Introduction :¦Généralement, toute personne souffrant de déficits neurologiques suite à un accident vasculaire cérébral (AVC) devrait bénéficier d'un traitement multiprofessionnel intensif de neuroréhabilitation. Or, on constate que, malgré une même prise en charge, tous les patients n'évoluent pas de façon similaire. Si nous pouvions déterminer précocement le potentiel de récupération fonctionnelle de chaque patient, nous pourrions adapter le programme de réadaptation à ses besoins et à ses capacités.¦Objectifs :¦Identifier les facteurs prédictifs précoces du devenir fonctionnel des patients victimes d'AVC, sous traitement multiprofessionnel intensif de neuroréhabilitation.¦Matériel et méthode :¦Enquête prospective d'observation de suivi d'une cohorte de 176 patients victimes d'un premier AVC et admis dans le service de neuropsychologie et de neuroréhabilitation du CHUV, entre 2005 et 2010. L'état fonctionnel des patients a été évalué à l'aide de l'échelle de Mesure d'Indépendance Fonctionnelle (MIF), lors de leur entrée et de leur sortie du service de réadaptation.¦Résultats :¦Une analyse multivariée a mis en évidence que le fait d'être un homme, d'avoir moins de 55 ans, d'avoir un score de MIF supérieur à 100 lors de l'entrée en neuroréhabilitation, de bénéficier d'au minimum 70 jours de réhabilitation, de gagner chaque semaine au minimum 10% du gain de MIF possible et de ne pas souffrir ni d'aphasie, ni d'héminégligence, ni de spasticité, ni de complications durant le séjour de réadaptation étaient des facteurs prédictifs précoces d'une bonne évolution fonctionnelle sous traitement multiprofessionnel intensif de neuroréhabilitation.¦Conclusion :¦Tous les patients n'évoluent pas de façon identique sous traitement multiprofessionnel intensif de neuroréhabilitation ; une prise en charge adaptée, en particulier concernant l'intensité des traitements, devrait être proposée.
Resumo:
BACKGROUND: Rhino-orbito-cerebral mucormycosis is an opportunistic rapidly progressive infection affecting almost exclusively diabetic or immunocompromised patients. CASE REPORTS: Three cases are reported. For one patient mucormycosis was the first manifestation of juvenile diabetes and the evolution was favorable. In the second case the infection affected a known diabetic patient and the clinical course was fatal. The third patient was immunocompromised, showed mild clinical features and a rapidly fatal evolution, the diagnosis being made only postmortem. CONCLUSION: These three cases illustrate the wide clinical spectrum of rhino-orbito-cerebral mucormycosis, its serious nature and difficult diagnosis.