6 resultados para Tris(2-ethylhexyl) trimellitate

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Autologous blood transfusion (ABT) efficiently increases sport performance and is the most challenging doping method to detect. Current methods for detecting this practice center on the plasticizer di(2-ethlyhexyl) phthalate (DEHP), which enters the stored blood from blood bags. Quantification of this plasticizer and its metabolites in urine can detect the transfusion of autologous blood stored in these bags. However, DEHP-free blood bags are available on the market, including n-butyryl-tri-(n-hexyl)-citrate (BTHC) blood bags. Athletes may shift to using such bags to avoid the detection of urinary DEHP metabolites. STUDY DESIGN AND METHODS: A clinical randomized double-blinded two-phase study was conducted of healthy male volunteers who underwent ABT using DEHP-containing or BTHC blood bags. All subjects received a saline injection for the control phase and a blood donation followed by ABT 36 days later. Kinetic excretion of five urinary DEHP metabolites was quantified with liquid chromatography coupled with tandem mass spectrometry. RESULTS: Surprisingly, considerable levels of urinary DEHP metabolites were observed up to 1 day after blood transfusion with BTHC blood bags. The long-term metabolites mono-(2-ethyl-5-carboxypentyl) phthalate and mono-(2-carboxymethylhexyl) phthalate were the most sensitive biomarkers to detect ABT with BTHC blood bags. Levels of DEHP were high in BTHC bags (6.6%), the tubing in the transfusion kit (25.2%), and the white blood cell filter (22.3%). CONCLUSIONS: The BTHC bag contained DEHP, despite being labeled DEHP-free. Urinary DEHP metabolite measurement is a cost-effective way to detect ABT in the antidoping field even when BTHC bags are used for blood storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: As growing concerns exist regarding phthalate exposure, which could be teratogenic, carcinogenic or induce reproductive toxicity, we aimed to review the evidence of the risks due to the use of medical devices containing di(2-ethylhexyl)phthalate in hospitalized neonates. METHODS: We reviewed the literature, searching through medical literature databases (Pubmed, MEDLINE, EBM reviews, Cochrane database, Embase and Google Scholar) using the following keywords: phthalate, di(2-ethylhexyl)phthalate, newborn and neonate. RESULTS: We identified several associations with short and long term health dangers, mainly subfertility, broncho-pulmonary dysplasia, necrotising enterocolitis, parenteral nutrition associated cholestasis and neuro-developmental disorders. These data are based mainly on animal or observational human studies. CONCLUSION: Clinicians must be aware of the potential risks due to phthalate exposure in the NICU. Di(2-ethylhexyl)phthalate containing materials should be identified and alternative devices should be considered. There is a need to improve knowledge in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are growing concerns on long-term health consequences, notably on fertility rates, of plasticizers such as phthalates. While di(2-ethylhexyl)phthalate (DEHP) is currently used in several medical devices, newborns in the neonatal intensive care unit are both more exposed and more vulnerable to DEHP. The objectives of this study were to identify, count, and describe possible sources of DEHP in a neonatal care unit. Our method consisted in the listing and the inspection of the information on packaging, complemented by contact with manufacturers when necessary. According to the results, 6% of all products and 10% of plastic products contained some DEHP; 71% of these involved respiratory support devices. A vast majority of the items showed no information on the content of DEHP. Further research is needed, particularly to determine the effects of such an early exposure and to study and develop safer alternatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms.