5 resultados para Trinity College (Hartford, Conn.)
em Université de Lausanne, Switzerland
Resumo:
The purpose of this study was to evaluate the factor structure and the reliability of the French versions of the Identity Style Inventory (ISI-3) and the Utrecht-Management of Identity Commitments Scale (U-MICS) in a sample of college students (N = 457, 18 to 25 years old). Confirmatory factor analyses confirmed the hypothesized three-factor solution of the ISI-3 identity styles (i.e. informational, normative, and diffuse-avoidant styles), the one-factor solution of the ISI-3 identity commitment, and the three-factor structure of the U-MICS (i.e. commitment, in-depth exploration, and reconsideration of commitment). Additionally, theoretically consistent and meaningful associations among the ISI-3, U-MICS, and Ego Identity Process Questionnaire (EIPQ) confirmed convergent validity. Overall, the results of the present study indicate that the French versions of the ISI-3 and UMICS are useful instruments for assessing identity styles and processes, and provide additional support to the cross-cultural validity of these tools.
Resumo:
Swain corrects the chi-square overidentification test (i.e., likelihood ratio test of fit) for structural equation models whethr with or without latent variables. The chi-square statistic is asymptotically correct; however, it does not behave as expected in small samples and/or when the model is complex (cf. Herzog, Boomsma, & Reinecke, 2007). Thus, particularly in situations where the ratio of sample size (n) to the number of parameters estimated (p) is relatively small (i.e., the p to n ratio is large), the chi-square test will tend to overreject correctly specified models. To obtain a closer approximation to the distribution of the chi-square statistic, Swain (1975) developed a correction; this scaling factor, which converges to 1 asymptotically, is multiplied with the chi-square statistic. The correction better approximates the chi-square distribution resulting in more appropriate Type 1 reject error rates (see Herzog & Boomsma, 2009; Herzog, et al., 2007).
Resumo:
Sex differences in circadian rhythms have been reported with some conflicting results. The timing of sleep and length of time in bed have not been considered, however, in previous such studies. The current study has 3 major aims: (1) replicate previous studies in a large sample of young adults for sex differences in sleep patterns and dim light melatonin onset (DLMO) phase; (2) in a subsample constrained by matching across sex for bedtime and time in bed, confirm sex differences in DLMO and phase angle of DLMO to bedtime; (3) explore sex differences in the influence of sleep timing and length of time in bed on phase angle. A total of 356 first-year Brown University students (207 women) aged 17.7 to 21.4 years (mean = 18.8 years, SD = 0.4 years) were included in these analyses. Wake time was the only sleep variable that showed a sex difference. DLMO phase was earlier in women than men and phase angle wider in women than men. Shorter time in bed was associated with wider phase angle in women and men. In men, however, a 3-way interaction indicated that phase angles were influenced by both bedtime and time in bed; a complex interaction was not found for women. These analyses in a large sample of young adults on self-selected schedules confirm a sex difference in wake time, circadian phase, and the association between circadian phase and reported bedtime. A complex interaction with length of time in bed occurred for men but not women. We propose that these sex differences likely indicate fundamental differences in the biology of the sleep and circadian timing systems as well as in behavioral choices.