8 resultados para Time (Jewish law)
em Université de Lausanne, Switzerland
Resumo:
Objectives: After several years of increasing 'normalisation' of cannabis use in Switzerland at the beginning of the new millennium, a reversed tendency, marked among others by a more stringent law-enforcement, set in. The presentation examines the question of where adolescents and young adults obtained cannabis, within the context of this societal change. In addition, it compares the sources of supply for cannabis with those found in studies of other European countries. Methods: Analyses are based on data from the Swiss Cannabis Monitoring Study. As part of this longitudinal, representative population survey, more than 5000 adolescents and young adults were interviewed by telephone on the topic of cannabis. Within the total sample, 593 (2004) or 554 (2007) respectively, current cannabis users replied to the questions on sources of supply. Changes in law-enforcement and societal climate concerning cannabis are assessed based on relevant literature, media reports and parliamentary discussions. Results: Whereas 22% of cannabis users stated in 2004 that they bought their cannabis from vendors in hemp shops, this proportion drastically decreased to 6% three years later. At the same time, cannabis was obtained increasingly from friends, while the proportion of users who purchased cannabis from dealers in the alleyway, more than doubled from 6% (2004) to 13% (2007). It was male cannabis users, and in particular, young adult and frequent users, who have moved into the alleyways. Generally, users who buy cannabis in the alleyway show more cannabis-related problems than those who mainly name other sources of supply, even when adjusted for sex, age and frequency of cannabis use. Discussion: Possible consequences of these changes in cannabis supply, like the risk of merging a previously cannabis-only market with other 'harder' drugs markets, are discussed.
Resumo:
Divorce and remarriage usually imply a redefinition of family boundaries, with consequences for the production and availability of social capital. This research shows that bonding and bridging social capitals are differentially made available by families. It first hypothesizes that bridging social capital is more likely to be developed in stepfamilies, and bonding social capital in first-time families. Second, the boundaries of family configurations are expected to vary within stepfamilies and within first-time families creating a diversity of family configurations within both structures. Third, in both cases, social capital is expected to depend on the ways in which their family boundaries are set up by individuals by including or excluding ex-partners, new partner's children, siblings, and other family ties. The study is based on a sample of 300 female respondents who have at least one child of their own between 5 and 13 years, 150 from a stepfamily structure and 150 from a first-time family structure. Social capital is empirically operationalized as perceived emotional support in family networks. The results show that individuals in first-time families more often develop bonding social capital and individuals in stepfamilies bridging social capital. In both cases, however, individuals in family configurations based on close blood and conjugal ties more frequently develop bonding social capital, whereas individuals in family configurations based on in-law, stepfamily or friendship ties are more likely to develop bridging social capital.
Resumo:
The integration of the differential equation of the second law of Fick applied to the diffusion of chemical elements in a semi-infinite solid made it easier to estimate the time of stay of olivine mega-cristals in contact with the host lava The results of this research show the existence of two groups of olivine. The first remained in contact with the magmatic liquid during 19 to 22 days, while the second remained so during only 5 to 9 days. This distinction is correlative to that based on the qualitative observation.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
BACKGROUND: Because of the known relationship between exposure to combination antiretroviral therapy and cardiovascular disease (CVD), it has become increasingly important to intervene against risk of CVD in human immunodeficiency virus (HIV)-infected patients. We evaluated changes in risk factors for CVD and the use of lipid-lowering therapy in HIV-infected individuals and assessed the impact of any changes on the incidence of myocardial infarction. METHODS: The Data Collection on Adverse Events of Anti-HIV Drugs Study is a collaboration of 11 cohorts of HIV-infected patients that included follow-up for 33,389 HIV-infected patients from December 1999 through February 2006. RESULTS: The proportion of patients at high risk of CVD increased from 35.3% during 1999-2000 to 41.3% during 2005-2006. Of 28,985 patients, 2801 (9.7%) initiated lipid-lowering therapy; initiation of lipid-lowering therapy was more common for those with abnormal lipid values and those with traditional risk factors for CVD (male sex, older age, higher body mass index [calculated as the weight in kilograms divided by the square of the height in meters], family and personal history of CVD, and diabetes mellitus). After controlling for these, use of lipid-lowering drugs became relatively less common over time. The incidence of myocardial infarction (0.32 cases per 100 person-years [PY]; 95% confidence interval [CI], 0.29-0.35 cases per 100 PY) appeared to remain stable. However, after controlling for changes in risk factors for CVD, the rate decreased over time (relative rate in 2003 [compared with 1999-2000], 0.73 cases per 100 PY [95% CI, 0.50-1.05 cases per 100 PY]; in 2004, 0.64 cases per 100 PY [95% CI, 0.44-0.94 cases per 100 PY]; in 2005-2006, 0.36 cases per 100 PY [95% CI, 0.24-0.56 cases per 100 PY]). Further adjustment for lipid levels attenuated the relative rates towards unity (relative rate in 2003 [compared with 1999-2000], 1.06 cases per 100 PY [95% CI, 0.63-1.77 cases per 100 PY]; in 2004, 1.02 cases per 100 PY [95% CI, 0.61-1.71 cases per 100 PY]; in 2005-2006, 0.63 cases per 100 PY [95% CI, 0.36-1.09 cases per 100 PY]). CONCLUSIONS: Although the CVD risk profile among patients in the Data Collection on Adverse Events of Anti-HIV Drugs Study has decreased since 1999, rates have remained relatively stable, possibly as a result of a more aggressive approach towards managing the risk of CVD.
Resumo:
Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.