17 resultados para ThyssenKrupp Atlantic Steel Company
em Université de Lausanne, Switzerland
Resumo:
Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely.
Resumo:
P>To put constraints on the Mesozoic to recent growth of the Anti-Atlas system, we investigated the temperature-time history of rocks by applying extensive low-temperature thermochronological analysis to three Precambrian inliers along the coast and 250 km into the interior. Bedrocks yield old U-Th/He ages on zircon (248-193 Ma) and apatite (150-50 Ma) and also fission-track ages of 173-121 Ma on apatite. These datasets are interpreted as recording passive margin upward movements from central Atlantic rifting until the Early Cretaceous. A phase of sedimentary burial was evidenced for the Cretaceous-Eocene. The extension of this thin (1.5 km) basin is loosely constrained but can be extended to the western regions of northern Africa. Effects of the existing thermal perturbation of lithospheric origin 100 km below the Atlas show that the 120-60 degrees C isotherms are not much deflected. Large-scale uplift has possibly occurred in the western Anti-Atlas since c. 30 Ma and is associated with a mean denudation rate of 0.08 km Ma-1.
Resumo:
Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific(1,2). Rapid warming has begun to lift this barrier(3), potentially facilitating the interchange of marine biota between the two seas(4). Here, we forecast the potential northward progression of 515 fish species following climate change, and report the rate of potential species interchange between the Atlantic and the Pacific via the Northwest Passage and the Northeast Passage. For this, we projected niche-based models under climate change scenarios and simulated the spread of species through the passages when climatic conditions became suitable. Results reveal a complex range of responses during this century, and accelerated interchange after 2050. By 2100 up to 41 species could enter the Pacific and 44 species could enter the Atlantic, via one or both passages. Consistent with historical and recent biodiversity interchanges(5,6), this exchange of fish species may trigger changes for biodiversity and food webs in the North Atlantic and North Pacific, with ecological and economic consequences to ecosystems that at present contribute 39% to global marine fish landings.
Resumo:
In this paper we analyse the decline of the Swiss corporate network between 1980 and 2000. We address the theoretical and methodological challenge of this transformation by the use of a combination of network analysis and multiple correspondence analysis (MCA). Based on a sample of top managers of the 110 largest Swiss companies in 1980 and 2000 we show that, beyond an adjustment to structural pressure, an explanation of the decline of the network has to include the strategies of the fractions of the business elites. We reveal that three factors contribute crucially to the decline of the Swiss corporate network: the managerialization of industrial leaders, the marginalization of law degree holders and the influx of hardly connected foreign managers.
Resumo:
The Fuerteventura Jurassic sedimentary succession consists of oceanic and elastic deposits, the latter derived from the southwestern Moroccan continental margin. Normal mid-oceanic-ridge basalt (N-MORB) flows and breccias are found at the base of the sequence and witness sea-floor spreading events in the central Atlantic. These basalts were extruded in a postrift environment (post-late Pliensbachian), We propose a Toarcian age for the Atlantic oceanic floor in this region, on the basis of the presence higher up in the sequence of the Bositra buchi filament microfacies (Aalenian-Bajocian) and of elastic deposits reflecting tectono-eustatic events (e.g,, late Toarcian to mid-Callovian erosion of the rift shoulder). The S-l sea-floor oceanic magnetic anomaly west of Fuerteventura is therefore at least Toarcian in age. The remaining sequence records Atlantic-Tethyan basinal facies (e.g., Callovian-Oxfordian red clays, Aptian-Albian black shales) alternating with elastic deposits (e.g., Kimmeridgian-Berriasian periplatform calciturbidites and a Lower Cretaceous deep-sea fan system). The Fuerteventura N-MORB outcrops represent the only Early Jurassic oceanic basement described so far in the central Atlantic. They are covered by a 1600 m, nearly continuous sedimentary sequence which extends to Upper Cretaceous facies.
Resumo:
Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).