2 resultados para Test of Proportionality
em Université de Lausanne, Switzerland
Resumo:
Preterm children born before 32 weeks of gestation represent 1% of the annual births in Switzerland, and are the most at risk of neurodevelopmental disabilities. A neurological surveillance is thus implemented in the neonatal units, and multidisciplinary neurodevelopmental follow-up is offered to all our preterm patients. The follow-up clinics of the University hospitals in Lausanne and Geneva follow the Swiss guidelines for follow-up. An extended history and neurological examination is taken at each appointment, and a standardized test of development is performed. These examinations, which take place between the ages of 3 months and 9 years old, allow the early identification and treatment of developmental disorders frequent in this population, such as motor, cognitive or behavioral disorders, as well as the monitoring of the quality of neonatal care.
Resumo:
OBJECTIVE: Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS: Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION: The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.