204 resultados para Telomeric silencing

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Telomeres are associated with chromatin-mediated silencing of genes in their vicinity. However, how epigenetic markers mediate mammalian telomeric silencing and whether specific proteins may counteract this effect are not known. We evaluated the ability of CTF1, a DNA- and histone-binding transcription factor, to prevent transgene silencing at human telomeres. CTF1 was found to protect a gene from silencing when its DNA-binding sites were interposed between the gene and the telomeric extremity, while it did not affect a gene adjacent to the telomere. Protein fusions containing the CTF1 histone-binding domain displayed similar activities, while mutants impaired in their ability to interact with the histone did not. Chromatin immunoprecipitation indicated the propagation of a hypoacetylated histone structure to various extents depending on the telomere. The CTF1 fusion protein was found to recruit the H2A.Z histone variant at the telomeric locus and to restore high histone acetylation levels to the insulated telomeric transgene. Histone lysine trimethylations were also increased on the insulated transgene, indicating that these modifications may mediate expression rather than silencing at human telomeres. Overall, these results indicate that transcription factors can act to delimit chromatin domain boundaries at mammalian telomeres, thereby blocking the propagation of a silent chromatin structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, efficient silencer function requires telomere proximity, i.e. compartments of the nucleoplasm enriched in silencing factors. Accordingly, silencers located far from telomeres function inefficiently. We show here that cells lacking yKu balance between two mitotically stable states of silencing competence. In one, a partial delocalization of telomeres and silencing factors throughout the nucleoplasm correlates with enhanced silencing at a non-telomeric locus, while in the other, telomeres retain their focal pattern of distribution and there is no repression at the non-telomeric locus, as observed in wild-type cells. The two states also differ in their level of residual telomeric silencing. These findings indicate the existence of a yKu-independent pathway of telomere clustering and Sir localization. Interestingly, this pathway appears to be under epigenetic control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgene expression in eukaryotic cells strongly depends on the locus of integration in the host genome and often results in limited transcription level because of unfavorable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which are believed to act on the chromatin structure and may protect transgenes from this so-called position effect. Despite being extensively used to increase transgene expression, the mechanism of action of many of these elements remains largely unknown. Here we evaluated different epigenetic regulatory DNA elements for their ability to protect transgene transcription at telomeres, a defined chromatin environment associated to low or inconsistent expression caused by the Telomere Position Effect (TPE). For the assessment of the effects of epigenetic regulators at telomeres, a novel dual reporter system had to be designed. Telomeric integration of the newly-developed dual reporter system carrying different epigenetic regulators showed that MARs (Matrix Attachment Regions), a UCOE (Ubiquitous Chromatin-Opening Element) or the chicken cHS4 insulator have strong barrier activity which prevented TPE from spreading toward the centromere, resulting in stable and in some cases increased expression of a telomeric-distal reporter gene. In addition, MARs and STAR element 40 resulted in an increase of cells expressing the telomeric-proximal reporter gene, suggesting also an anti-silencing effect. Chromatin immunoprecipitation assays revealed that at telomeres MARs actively promote the deposition of euchromatic histone marks, especially acetylation of both histone H3 and H4, which might be involved in MARs' barrier and transcriptional activator activities. Differently, the chromatin in proximity of the UCOE element was depleted of several repressive chromatin marks, such as trimethylated lysine 9 and lysine 27 on histone H3 and trimethylated lysine 20 of histone H4, possibly favoring the preservation of an open chromatin structure at the integration site. We conclude that epigenetic regulatory elements that may be used to enhance and sustain transgene expression have all a specific epigenetic signature which might be at the basis of their mechanism of action, and that a combination of different classes of epigenetic regulators might be advantageous when high levels of protein expression are required. - L'expression des transgènes dans les cellules eucaryotes est fortement influencée par leur site d'intégration dans le génome. En effet, une structure chromatinienne défavorable au niveau du site d'intégration peut fortement limiter le degré d'expression d'un transgène. Il existe toutefois des séquences d'ADN qui, en agissant sur la structure de la chromatine, permettent de limiter cet effet de position et, par conséquent, de promouvoir l'expression soutenue d'un transgène. Ces éléments génomiques, connus comme régulateurs épigénétiques, sont largement utilisés dans plusieurs domaines où une expression élevée et soutenue est requise, malgré un mode de fonctionnement parfois méconnu. Dans cette étude, j'ai évalué la capacité de différents régulateurs épigénétiques à protéger la transcription de transgènes au niveau des télomères, régions chromatiniennes bien définies qui ont été associées à un fort effet de silençage, connu comme «effet de position télomérique». Pour cela, un nouveau système à deux gènes rapporteurs a été développé. Lorsque des MARs (Matrix Attachment Regions, séquences d'ADN pouvant s'associer à la matrice nucléaire), un UCOE (Ubiquitous Chromatin-Opening Element, élément pouvant ouvrir la chromatine) ou l'isolateur génétique cHS4 (dérivé du locus de la β-globine de poulet) sont placés entre les deux gènes rapporteurs, une forte activité barrière bloquant la propagation de la chromatine répressive télomérique est observée, résultant en un plus grand nombre de cellules exprimant le gène télomérique-distal. D'autre part, une augmentation du nombre de cellules exprimant le gène télomérique-proximal, observée en présence des éléments MAR et STAR 40 (Stabilizing Anti-Repressor element 40, un élément pouvant prévenir la répression génique), suggère aussi un faible effet anti-silençage pour ces éléments. Des expériences d'immunoprécipitation de la chromatine démontrent qu'au télomère, les MARs favorisent l'assemblage de marqueurs de la chromatine active, surtout l'acétylation des histones H3 et H4, qui pourraient être à la base de l'activité barrière et de celle d'activateur transcriptionel. Différemment, la chromatine à proximité de l'élément UCOE est particulièrement pauvre en marqueurs de la chromatine silencieuse, comme la trimethylation des lysines 9 et 27 de l'histone H3, ainsi que la trimethylation de la lysine 20 de l'histone H4. Cela suggère que UCOE pourrait préserver une structure chromatinienne ouverte au site d'intégration, favorisant l'expression des gènes à sa proximité. En conclusion, les régulateurs épigénétiques analysés lors de cette étude ont tous montré une signature épigénétique spécifique qui pourrait être à la base de leurs mécanismes de fonctionnement, suggérant aussi qu'une utilisation d'éléments épigénétiques de classe différente dans un même vecteur d'expression pourrait être avantageuse lorsque de hauts et soutenus niveaux d'expression sont nécessaires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Regulation of genes transferred to eukaryotic organisms is often limited by the lack of consistent expression levels in all transduced cells, which may result in part from epigenetic gene silencing effects. This reduces the efficacy of ligand-controlled gene switches designed for somatic gene transfers such as gene therapy. METHODS: A doxycycline-controlled transgene was stably introduced in human cells, and clones were screened for epigenetic silencing of the transgene. Various regulatory proteins were targeted to the silent transgene, to identify those that would mediate regulation by doxycycline. RESULTS: A doxycycline-controlled minimal promoter was found to be prone to gene silencing, which prevents activation by a fusion of the bacterial TetR DNA-binding domain with the VP16 activator. DNA modification studies indicated that the silenced transgene adopts a poorly accessible chromatin structure. Several cellular transcriptional activators were found to restore an accessible DNA structure when targeted to the silent transgene, and they cooperated with Tet-VP16 to mediate regulation by doxycycline. CONCLUSIONS: Reversal of the silencing of a tetracycline-regulated minimal promoter requires a chromatin-remodeling activity for subsequent promoter activation by the Tet-VP16 fusion protein. Thus, distinct regulatory elements may be combined to obtain long-term regulation and persistent expression of exogenous genes in eukaryotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractBACKGROUND: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. We have recently shown that KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, but also demonstrated that this process is at times countered by endogenous influences.METHOD: To investigate this issue further we used an ectopic KRAB-based repressor. This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites within genes, and to record its impact on gene expression. We then correlated this KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin structures to identify specific characteristics making a gene susceptible to repression.RESULTS: We found that genes that were susceptible to KRAB/KAP1-mediated silencing carried higher levels of repressive histone marks both at the promoter and over the transcribed region than genes that were insensitive. In parallel, we found a high enrichment in euchromatic marks within both the close and more distant environment of these genes.CONCLUSION: Together, these data indicate that high levels of gene activity in the genomic environment and the pre-deposition of repressive histone marks within a gene increase its susceptibility to KRAB/KAP1-mediated repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To produce agronomically competitive rice with nutritionally superior, environmentally safe phytic acid (PA) levels, hairpin RNA (hpRNA)- and artificial microRNA (amiRNA)-mediated gene silencing approaches were explored to reduce both myo-inositol kinase gene (OsMIK) expression and PA accumulation in rice seeds. hpRNA and amiRNA sequences targeted to OsMIK (hpMIK and amiMIK), under the control of a rice Ole18 promoter, were transformed into the rice cultivar Nippon-bare. Fourteen and 21 independent transgenic events were identified containing the hpMIK and amiMIK constructs, respectively, from which five stable homozygous transgenic lines of each were developed together with their null siblings. Southern blotting demonstrated transgene integration into the genome and quantitative real-time PCR showed that gene silencing was restricted to seeds. OsMIK transcripts were significantly reduced in both transgenic amiMIK and hpMIK seeds, which had PA levels reduced by 14.9-50.2 and 38.1-50.7 %, respectively, compared with their respective null siblings. There were no systematic significant differences in agronomic traits between the transgenic lines and their non-transgenic siblings, and no correlation between seed PA contents and decreased rates of seed germination and seedling emergence. The results of the present study suggest that Ole 18-driven OsMIK silencing via hpRNA and amiRNA could be an effective way to develop agronomically competitive low phytic acid rice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkitt lymphoma is one of the most aggressive tumors affecting humans. Together with the characteristic chromosomal translocation that constitutively activates the c-Myc oncogene, alterations in cellular tumor suppressor pathways are additionally required in order to allow the cells to overcome anti-oncogenic barriers and proliferate in an uncontrolled manner. The INK4a/ARF locus on chromosome 9p21 is considered a safeguard locus since it encodes the two important tumor suppressor proteins, p14 (ARF) and p16 (INK4a) . By regulating the p53 and Rb pathways p14 (ARF) and p16 (INK4a) respectively act as pro-apoptotic and cell cycle inhibitor proteins. The importance of the INK4a/ARF locus has been well documented in several human tumors as well as in Burkitt lymphoma. Although the mechanisms responsible for the transcriptional regulation of the INK4a/ARF locus have been thoroughly characterized, less is known about its posttranscriptional control. In this study we found that p16 (INK4a) and p14 (Arf) are concurrently inactivated in a panel of BL cell lines. We demonstrate that along with the epigenetic silencing of the p16INK4a gene, the complete inactivation of the locus is achieved by the improper turnover of INK4/ARF proteins by the ubiquitin-proteasome system (UPS), as the proteasome inhibitor MG-132 blocks p14 (ARF) degradation and induces a dramatic stabilization of the p16 (INK4a ) protein. We establish that the simultaneous deregulation of both DNA methylation patterns and the ubiquitin-dependent proteolysis system is required to completely inactive the INK4/ARF locus, opening new prospects for the understanding and treatment of Burkitt lymphoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic defects in autosomal-dominant polycystic kidney disease (ADPKD) promote cystic growth of renal tubules, at least in part by stimulating the accumulation of cAMP. How renal cAMP levels are regulated is incompletely understood. We show that cAMP and the expression of its synthetic enzyme adenylate cyclase-6 (AC6) are up-regulated in cystic kidneys of Bicc1(-)(/-) knockout mice. Bicc1, a protein comprising three K homology (KH) domains and a sterile alpha motif (SAM), is expressed in proximal tubules. The KH domains independently bind AC6 mRNA and recruit the miR-125a from Dicer, whereas the SAM domain enables silencing by Argonaute and TNRC6A/GW182. Bicc1 similarly induces silencing of the protein kinase inhibitor PKIα by miR-27a. Thus, Bicc1 is needed on these target mRNAs for silencing by specific miRNAs. The repression of AC6 by Bicc1 might explain why cysts in ADPKD patients preferentially arise from distal tubules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.