9 resultados para Technological Discontinuities
em Université de Lausanne, Switzerland
Resumo:
The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m?2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008?May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m?year?1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.
Resumo:
Human genetics has progressed at an unprecedented pace during the past 10 years. DNA microarrays currently allow screening of the entire human genome with high level of coverage and we are now entering the era of high-throughput sequencing. These remarkable technical advances are influencing the way medical research is conducted and have boosted our understanding of the structure of the human genome as well as of disease biology. In this context, it is crucial for clinicians to understand the main concepts and limitations of modern genetics. This review will describe key concepts in genetics, including the different types of genetic markers in the human genome, review current methods to detect DNA variation, describe major online public databases in genetics, explain key concepts in statistical genetics and finally present commonly used study designs in clinical and epidemiological research. This review will therefore concentrate on human genetic variation analysis.
Resumo:
We study the dynamics of a water-oil meniscus moving from a smaller to a larger pore. The process is characterised by an abrupt change in the configuration, yielding a sudden energy release. A theoretic study for static conditions provides analytical solutions of the surface energy content of the system. Although the configuration after the sudden energy release is energetically more convenient, an energy barrier must be overcome before the process can happen spontaneously. The energy barrier depends on the system geometry and on the flow parameters. The analytical results are compared to numerical simulations that solve the full Navier-Stokes equation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. First, the numerical simulations of a quasi-static process are validated by comparison with the analytical solutions for a static meniscus, then numerical simulations with varying injection velocity are used to investigate dynamic effects on the configuration change. During the sudden energy jump the system exhibits an oscillatory behaviour. Extension to more complex geometries might elucidate the mechanisms leading to a dynamic capillary pressure and to bifurcations in final distributions of fluid phases in porous
Resumo:
Long synthetic peptides (LSPs) have a variety of important clinical uses as synthetic vaccines and drugs. Techniques for peptide synthesis were revolutionized in the 1960s and 1980s, after which efficient techniques for purification and characterization of the product were developed. These improved techniques allowed the stepwise synthesis of increasingly longer products at a faster rate, greater purity, and lower cost for clinical use. A synthetic peptide approach, coupled with bioinformatics analysis of genomes, can tremendously expand the search for clinically relevant products. In this Review, we discuss efforts to develop a malaria vaccine from LSPs, among other clinically directed work.