6 resultados para Tariff on fishes
em Université de Lausanne, Switzerland
Resumo:
The optimal size-to-age at maturity depends on growth and mortality rates, which vary with environment. Therefore, organisms in spatially or temporaly changing environments should develop adaptative phenotypic plasticity for this trait. Experimental work by Alm (1959) on several fish species shows a dome-shape norm of reaction for size-to-age at maturity: size at maturity is smaller in both fast-growing and slow-growing fishes, than it is in fish with a medium growth rate. Using computer simulations, we show that such a dome-shaped norm of reaction is optimal when assuming a finite life span and a negative relationship between production and survival rates. This latter assumption is supported by empirical data, as well as by physiological and emographic arguments.
Resumo:
Complex sex-determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations have suggested that sex-antagonistic selection may play such a role, but this assumed absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations, and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female-biases in primary sex ratios, so that sex-ratio selection makes the system collapse towards male- or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harbouring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex-antagonistic selection is a causal agent, or if other selective processes are required (such as local mate competition favouring female biased sex ratios).
Resumo:
A noticeable increase in mean temperature has already been observed in Switzerland and summer temperatures up to 4.8 K warmer are expected by 2090. This article reviews the observed impacts of climate change on biodiversity and consider some perspectives for the future at the national level. The following impacts are already evident for all considered taxonomic groups: elevation shifts of distribution toward mountain summits, spread of thermophilous species, colonisation by new species from warmer areas and phenological shifts. Additionally, in the driest areas, increasing droughts are affecting tree survival and fish species are suffering from warm temperatures in lowland regions. These observations are coherent with model projections, and future changes will probably follow the current trends. These changes will likely cause extinctions for alpine species (competition, loss of habitat) and lowland species (temperature or drought stress). In the very urbanised Swiss landscape, the high fragmentation of the natural ecosystems will hinder the dispersal of many species towards mountains. Moreover, disruptions in species interactions caused by individual migration rates or phenological shifts are likely to have consequences for biodiversity. Conversely, the inertia of the ecosystems (species longevity, restricted dispersal) and the local persistence of populations will probably result in lower extinction rates than expected with some models, at least in 21st century. It is thus very difficult to estimate the impact of climate change in terms of species extinctions. A greater recognition by society of the intrinsic value of biodiversity and of its importance for our existence will be essential to put in place effective mitigation measures and to safeguard a maximum number of native species.
Resumo:
BACKGROUND: The exceptionally diverse species flocks of cichlid fishes in East Africa are prime examples of parallel adaptive radiations. About 80% of East Africa's more than 1 800 endemic cichlid species, and all species of the flocks of Lakes Victoria and Malawi, belong to a particularly rapidly evolving lineage, the haplochromines. One characteristic feature of the haplochromines is their possession of egg-dummies on the males' anal fins. These egg-spots mimic real eggs and play an important role in the mating system of these maternal mouthbrooding fish. RESULTS: Here, we show that the egg-spots of haplochromines are made up of yellow pigment cells, xanthophores, and that a gene coding for a type III receptor tyrosine kinase, colony-stimulating factor 1 receptor a (csf1ra), is expressed in egg-spot tissue. Molecular evolutionary analyses reveal that the extracellular ligand-binding and receptor-interacting domain of csf1ra underwent adaptive sequence evolution in the ancestral lineage of the haplochromines, coinciding with the emergence of egg-dummies. We also find that csf1ra is expressed in the egg-dummies of a distantly related cichlid species, the ectodine cichlid Ophthalmotilapia ventralis, in which markings with similar functions evolved on the pelvic fin in convergence to those of the haplochromines. CONCLUSION: We conclude that modifications of existing signal transduction mechanisms might have evolved in the haplochromine lineage in association with the origination of anal fin egg-dummies. That positive selection has acted during the evolution of a color gene that seems to be involved in the morphogenesis of a sexually selected trait, the egg-dummies, highlights the importance of further investigations of the comparative genomic basis of the phenotypic diversification of cichlid fishes.
Resumo:
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Resumo:
In terrestrial snakes, many cases of intraspecific shifts in dietary habits as a function of predator sex and body size are driven by gape-limitation - and hence, are most common in species that feed on relatively large prey, and exhibit a wide body-size range. Our data on seasnakes reveal an alternative mechanism for intraspecific niche partitioning, based on sex-specific seasonal anorexia induced by reproductive activities. Turtle-headed seasnakes (Emydocephalus annulatus) on coral reefs in the New Caledonian Lagoon feed entirely on the eggs of demersal-spawning fishes. DNA sequence data (cytochrome b gene) on eggs that we palpated from stomachs of 37 snakes showed that despite this ontogenetic-stage specialization, the prey come from a taxonomically diverse array of species including damselfish (41% of samples, at least 5 species), blennies (41%, 4 species) and gobies (19%, 5 species). The composition of snake diets shifted seasonally (with damselfish dominating in winter but not summer), presumably reflecting seasonality of fish reproduction. That seasonal shift affects male and female snakes differently, because reproduction is incompatible with foraging. Adult female seasnakes ceased feeding when they became heavily distended with developing embryos in late summer, and males ceased feeding while they were mate-searching in winter. The sex divergence in foraging habits may be amplified by sexual size dimorphism; females grow larger than males, and larger snakes (of both sexes) feed more on damselfish (which often lay their eggs in exposed sites) than on blennies and gobies (whose eggs are hidden within narrow crevices). Specific features of reproductive biology of coral-reef fish (seasonality and nest type) have generated intraspecific niche partitioning in these seasnakes, by mechanisms different from those that apply to terrestrial snakes.