198 resultados para Targeting element
em Université de Lausanne, Switzerland
Resumo:
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.
Resumo:
The cytokine macrophage migration inhibitory factor plays a central role in inflammation, cell proliferation and tumorigenesis. Moreover, macrophage migration inhibitory factor levels correlate with tumor aggressiveness and metastatic potential. Histone deacetylase inhibitors are potent antitumor agents recently introduced in the clinic. Therefore, we hypothesized that macrophage migration inhibitory factor would represent a target of histone deacetylase inhibitors. Confirming our hypothesis, we report that histone deacetylase inhibitors of various chemical classes strongly inhibited macrophage migration inhibitory factor expression in a broad range of cell lines, in primary cells and in vivo. Nuclear run on, transient transfection with macrophage migration inhibitory factor promoter reporter constructs and transduction with macrophage migration inhibitory factor expressing adenovirus demonstrated that trichostatin A (a prototypical histone deacetylase inhibitor) inhibited endogenous, but not episomal, MIF gene transcription. Interestingly, trichostatin A induced a local and specific deacetylation of macrophage migration inhibitory factor promoter-associated H3 and H4 histones which did not affect chromatin accessibility but was associated with an impaired recruitment of RNA polymerase II and Sp1 and CREB transcription factors required for basal MIF gene transcription. Altogether, this study describes a new molecular mechanism by which histone deacetylase inhibitors inhibit MIF gene expression, and suggests that macrophage migration inhibitory factor inhibition by histone deacetylase inhibitors may contribute to the antitumorigenic effects of histone deacetylase inhibitors.
Resumo:
BACKGROUND & AIMS: Trace elements (TE) are involved in the immune and antioxidant defences which are of particular importance during critical illness. Determining plasma TE levels is costly. The present quality control study aimed at assessing the economic impact of a computer reminded blood sampling versus a risk guided on-demand monitoring of plasma concentrations of selenium, copper, and zinc. METHODS: Retrospective analysis of 2 cohorts of patients admitted during 6 months periods in 2006 and 2009 to the ICU of a University hospital. INCLUSION CRITERIA: to receive intravenous micronutrient supplements and/or to have a TE sampling during ICU stay. The TE samplings were triggered by computerized reminder in 2006 versus guided by nutritionists in 2009. RESULTS: During the 2 periods 636 patients met the inclusion criteria out of 2406 consecutive admissions, representing 29.7% and 24.9% respectively of the periods' admissions. The 2009 patients had higher SAPS2 scores (p = 0.02) and lower BMI compared to 2006 (p = 0.007). The number of laboratory determinations was drastically reduced in 2009, particularly during the first week, despite the higher severity of the cohort, resulting in à 55% cost reduction. CONCLUSIONS: The monitoring of TE concentrations guided by a nutritionist resulted in a reduction of the sampling frequency, and targeting on the sickest high risk patients, requiring a nutritional prescription adaptation. This control leads to cost reduction compared to an automated sampling prescription.
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.
Resumo:
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Resumo:
The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.
Resumo:
Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.
Resumo:
The epidermal growth factor receptor (EGFR) plays a central role in cell life by controlling processes such as growth or proliferation. This receptor is commonly overexpressed in a number of epithelial malignancies and its upregulation is often associated with an aggressive phenotype of the tumor. Thus, targeting of EGFR represents a very promising challenge in oncology, and antibodies raised against this receptor have been investigated as potential antitumor agents. Various putative mechanisms of action were proposed for such antibodies, including decreased proliferation, induction of apoptosis, stimulation of the immunological response against targeted cancer cells or combinations thereof. We report here the development of an alternative high affinity molecule that is directed against EGFR. Production of this pentameric protein, named peptabody-EGF, includes expression in a bacterial expression system and subsequent refolding and multimerization of peptabody monomers. The protein complex contains 5 human EGF ligand domains, which confer specific binding towards the extracellular portion of EGFR. Receptor binding of the peptabody-EGF had a strong antiproliferative effect on different cancer cell lines overexpressing EGFR. However, cells expressing constitutive levels of the target receptor were barely affected. Peptabody-EGF treated cancer cells exhibited typical characteristics of apoptosis, which was found to be induced within 30 min after the addition of the peptabody-EGF. In vitro experiments demonstrated a significantly higher binding activity for peptabody-EGF than for the therapeutic monoclonal EGFR antibody Mab-425. Furthermore, the antitumor action provoked by the peptabody-EGF was greatly superior than antibody mediated effects when tested on EGFR overexpressing cancer cell lines. These findings suggest a potential application of this high affinity molecule as a novel tool for anti-EGFR therapy.
Resumo:
Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor approximately 18-25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions.
Resumo:
A structural and functional analysis of the 5'-end region of the Xenopus laevis vitellogenin gene A1 revealed two transcription initiation sites located 1.8 kilobases apart. A RNA polymerase II binding assay indicates that both promoters form initiation complexes efficiently. In vitro, using a transcription assay derived from a HeLa whole-cell extract, the upstream promoter is more than 10-fold stronger than the downstream one. In contrast, both promoters have a similar strength in a HeLa nuclear extract. In vivo, that is in estrogen-stimulated hepatocytes, it is the downstream promoter homologous to the one used by the other members of the vitellogenin gene family, which is 50-fold stronger than the upstream promoter. Thus, if functional vitellogenin mRNA results from this latter activity, it would contribute less than 1% to the synthesis of vitellogenin by fully induced Xenopus hepatocytes expressing the four vitellogenin genes. In contrast, both gene A1 promoters are silent in uninduced hepatocytes. Transfection experiments using the Xenopus cell line B3.2 in which estrogen-responsiveness has been introduced reveal that the strong downstream promoter is controlled by an estrogen responsive element (ERE) located 330 bp upstream of it. The upstream promoter can also be controlled by the same ERE. Since the region comprising the upstream promoter is flanked by a 200 base pair long inverted repeat with stretches of homology to other regions of the X. laevis genome, we speculate that it might have been inserted upstream of the vitellogenin gene A1 by a recombination event and consequently brought under control of the ERE lying 1.5 kilobases downstream.
Resumo:
The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.