6 resultados para Talc
em Université de Lausanne, Switzerland
Resumo:
[Table des matières] 1 Contexte de la saisine. - 2 Définitions et terminologie. - 3 Minéralogie et géologie du talc. - 4 Production et utilisation du talc. - 5 Echantillonnage et analyse des fibres. - 6 Exposition professionnelle à la poussière de talc. - 7 Réglementation. - 8 Effets sur la santé - données cliniques - autres effets que le cancer. - 9 Etudes épidémiologiques. - 10 Données toxicologiques. - 11 Conclusions. - 12 Recommandations. - 13 Bibliographie. - Annexe 1: Liste des organismes sollicités dans le cadre de l'expertise. - Annexe 2: Compte rendu des auditions. - Annexe 3 : Analyse critique des études épidémiologiques menées en industrie extractive. - Annexe 4 : Importations françaises du talc de 2007 à 2009
Resumo:
The Totalp-Platta-Malenco ophiolites in the Eastern Central Alps offer a unique opportunity to study the behaviour of Li, Be and B in ultramafic rocks in response to serpentinization and to progressive Alpine metamorphism. These units represent the remnants of a former ocean-continent transition that was intensely serpentinized during exposure on the Jurassic seafloor of the Ligurian Tethys. From north to the south, three isograd reactions (lizardite double right arrow antigorite + brucite; lizardite + talc double right arrow antigorite; lizardite + tremolite double right arrow antigorite + diopside) have been used to quantify the evolution of the light element content of metamorphic minerals. We determined the Li, Be and B concentrations in major silicate minerals from the ultramafic bodies of Totalp, Platta and Malenco by secondary ion mass spectrometry. Mantle minerals have Be concentrations (e.g. <0.001-0.009 mu g/g in olivine) similar to the metamorphic minerals that replace them (e.g. <0.001-0.016 mu g/g in serpentine). The mantle signature of Be is thus neither erased during seafloor alteration nor by progressive metamorphism from prehnite-pumpellyite to epidote-amphibolite facies. In contrast, the Li and B inventories of metamorphic minerals are related to the lizardite-to-antigorite transition. Both elements display higher concentrations in the low-temperature serpentine polymorph lizardite (max. 156 mu/g Li, max. 318 mu g/g B) than in antigorite (max. 0.11 mu g/g Li, max. 12 mu g/g B). Calculated average B/Li ratios for lizardite (similar to 1395) and antigorite (similar to 115) indicate that Li fractionates from B during the lizardite-to-antigorite transition during prograde metamorphism in ultramafic rocks. In subduction zones, this signature is likely to be recorded in the B-rich nature of forearc fluids. Relative to oceanic mantle the Be content of mantle clinopyroxene is much higher, but similar to Be values from mantle xenoliths and subduction-related peridotite massifs. These data support previous hypothesis that the mantle rocks from the Eastern Central Alps have a subcontinental origin. We conclude that Be behaves conservatively during subduction metamorphism of ultramafic rocks, at least at low-temperature, and thus retains the fingerprint of ancient subduction-related igneous events in mantle peridotites. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
The following main lithostratigraphic units have been distinguished in the Domes Area. The Kibaran basement complex composed of gneisses, migmatites with amphibolite bands and metagranites is exposed in dome structures; metamorphic features of Kibaran age have been almost completely obliterated by extensive Lufilian reactivation. The post-Kibaran cover sequence is subdivided into the Lower Roan Group consisting of well-preserved quartzites with high Mg content, talc-bearing, extremely foliated schists intercalated with pseudo-conglomerates of tectonic origin and the Upper Roan Group including dolomitic marbles with rare stromatolites, metapelites and a sequence of detrital metasediments, with local volcano-sedimentary components and interlayered banded ironstones. The sediments of the Lower Roan Group are interpreted as continental to lagoonal-evaporitic deposits partly converted into the talc-kyanite + garnet assemblage characteristic of ``white schists''. The dolomites and metapelites of the Upper Roan Group are attributed to a carbonate platform sequence progressively subsiding under terrigenous deposits, whilst the detrital metasediments and BIF may be interpreted as a basinal sequence, probably deposited on oceanic crust grading laterally into marbles. Metagabbros and metabasalts are considered as remnants of an ocean-floor-type crustal unit probably related to small basins. Alkaline stocks of Silurian age intruded the post-Kibaran cover. Significant ancestral tectonic discontinuities promoted the development of a nappe pile that underwent high-pressure metamorphism during the Lufilian orogeny and all lithostratigraphic units. Rb-Sr and K-Ar and U-Pb data indicate an age of 700 Ma for the highest grade metamorphism and 500 Ma for blocking of the K-Ar and Rb-Sr system in micas, corresponding to the time when the temperature dropped below 350-degrees-400-degrees-C and to an age of about 400 Ma for the emplacement of hypabyssal syenitic bodies. A first phase of crustal shortening by decoupling of basement and cover slices along shallow shear zones has been recognized. Fluid-rich tectonic slabs of cover sediments were thus able to transport fluids into the anhydrous metamorphic basement or mafic units. During the subsequent metamorphic re-equilibration stage of high pressure, pre-existing thrusts horizons were converted into recrystallized mylonites. Due to uplift, rocks were re-equilibrated into assemblages compatible with lower pressures and slightly lower temperatures. This stage occurs under a decompressional (nearly adiabatic) regime, with P(fluid) almost-equal-to P(lithostatic). It is accompanied by metasomatic development of minerals, activated by injection of hot fluids. New or reactivated shear zones and mylonitic belts were the preferred conduits of fluids. The most evident regional-scale effect of these processes is the intense metasomatic scapolitization of formerly plagioclase-rich lithologies. Uraninite mineralization can probably be assigned to the beginning of the decompressional stage. A third regional deformation phase characterized by open folds and local foliation is not accompanied by significant growth of new minerals. However, pitchblende mineralization can be ascribed to this phase as late-stage, short-range remobilization of previously existing deposits. Finally, shallow alkaline massifs were emplaced when the level of the Domes Area now exposed was already subjected to exchange with meteoric circuits, activated by residual geothermal gradients generally related to intrusions or rifting. Most of the superficial U-showings with U-oxidation products were probably generated during this relatively recent phase.
Resumo:
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The deltaO-18(SMOW) values of the quartz (after coesite) (delta O-18 = 8.1 to 8.6 parts per thousand, n = 6), phengite (6.2 to 6.4 parts per thousand, n = 3), kyanite (6.1 parts per thousand, n = 2), garnet (5.5 to 5.8 parts per thousand, n = 9), ellenbergerite (6.3 parts per thousand, n = 1) and rutile (3.3. to 3.6 parts per thousand, n = 3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700-750-degrees-C. Minimum pressures are 31-32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc + kyanite = pyrope + coesite + H2O, the a(H2O) must be reduced to 0.4-0.75 at 700 750-degrees-C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X (CO2) > 0.02 (T = 750-degrees-C; P = 30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are approximately 680-degrees-C/30 kb at a(H2O) = 1.0 and are calculated to be approximately 70-degrees-C higher at a(H2O) = 0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34 +/- 2 kb, 700-750-degrees-C and 0.4-0.75. The oxygen isotope fractionation between quartz (deltaO-18 = 11.6%.) and garnet (deltaO-18 = 8.7 parts per thousand) in the surrounding orthognesiss is identical to that in the coesite-bearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (deltaD(smow) = -27 to -32 parts per thousand), on secondary talc and chlorite after pyrope (deltaD = - 39 to - 44 parts per thousand) and on the surrounding biotite (deltaD = -64 parts per thousand) and phengite (deltaD = -44 parts per thousand) gneiss. All phases appear to be in near-equilibrium. The very high deltaD values for the primary hydrous phases is consistent with an initial oceanic-derived/connate fluid source. The fluid source for the retrograde talc + chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar deltaD, but dissimilar deltaO-18 values of the coesite-bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.
Resumo:
Spontaneous pneumothorax (PNO) is usually due to rupture of a small subpleural bleb into the pleural cavity and affects mainly young men. After simple drainage, recurrence occurs in about 50% of cases. The risk of recurrence increases after each new PNO. Secondary PNO complicates an underlying pulmonary disease, especially chronic obstructive pulmonary disease with emphysema. A new form of secondary PNO has emerged in the recent years in AIDS patients with pneumocystis carinii pneumonia. We have shifted to a thoracoscopic therapy of PNO since May 1991. 25 PNO in 24 patients (1 bilateral) have been treated since that time up to April 1993. 19 PNO were primary, whereas 6 were secondary, included 3 iatrogenic PNO. Resection of the leaking parenchymal area was performed in 20 patients, and parietal partial pleurectomy was done in 20 cases. In the remaining cases, fibrin glue was applied on the lesion and in 3 cases, chemical pleurodesis was attempted using silver nitrate or talc. 1 AIDS patient died of ARDS. 3 patients had recurrent PNO and had thoracotomy without complication. 21 patients did well. Partial PNO recurred in one of them 4 months later, and was treated by simple needle aspiration. Thoracoscopy is a useful method to treat recurrent or persistent spontaneous PNO. After only 25 cases, our success rate in primary PNO is 90%. There should be a learning curve. On the basis of our experience, we believe that recognition of the lesion and its resection as well as apical parietal pleurectomy are necessary to obtain good results and a low recurrence rate.