202 resultados para TP53 mutations

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a 26-year-old female patient who was diagnosed within 4 years with chest sarcoma, lung adenocarcinoma, and breast cancer. While her family history was unremarkable, DNA sequencing of TP53 revealed a germline de novo non-sense mutation in exon 6 p.Arg213X. One year later, she further developed a contralateral ductal carcinoma in situ, and 18 months later a jaw osteosarcoma. This case illustrates the therapeutic pitfalls in the care of a young cancer patient with TP53 de novo germline mutations and the complications related to her first-line therapy. Suggestion is made to use the less stringent Chompret criteria for germline TP53 mutation screening. Our observation underlines the possibly negative effect of radiotherapy in generating second tumors in patients with a TP53 mutation. We also present a review of six previously reported cases, comparing their cancer phenotypes with those generally produced by TP53 mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the metastasis patterns of head and neck squamous cell carcinoma (HNSCC), intracranial spread is a rare but dreaded event. To date only very few cases have been reported and clinical and molecular data are sparse. We screened our archives for HNSCC patients from 1992 to 2005 who were diagnosed with brain metastases (BM). For retrospective analysis, all clinico-pathological data including disease-free survival (DFS), local progression-free survival (LPFS), and overall survival (OS) were compiled. Additionally, we assessed the mutational status of the TP53 gene and the prevalence of HPV serotypes by PCR and Sanger sequencing. Immunohistochemistry was applied to detect p16INK4A expression levels as surrogate marker for HPV infection. The prevalence rate of BM in our cohort comprising 193 patients with advanced HNSCC was 5.7 %. Of 11 patients with BM, 3 were female and 9 were male. Seven of the primary tumors were of oropharyngeal origin (OPSCC). LPFS of the cohort was 11.8 months, DFS was 12.1 months and OS was 36.0 months. After the diagnosis of BM, survival was 10.5 months. Five tumors showed a mutation in the TP53 gene, while five of the seven OPSCC tumors had a positive HPV status displaying infection with serotype 16 in all cases. Compared with patients who harbored TP53wt/HPV-positive tumors, patients with TP53 mutations showed a poor prognosis. Compared with the whole cohort, the interval between diagnosis of the primary and the detection of BM was prolonged in the HPV-infected OPSCC subgroup (26.4 vs. 45.6 months). The prognosis of HNSCC patients with BM is poor. In our cohort, most tumors were OPSCC with the majority being HPV positive. Our study points toward a putatively unusual metastatic behavior of HPV-positive OPSCC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NR2E3, a photoreceptor-specific nuclear receptor (PNR), represses cone-specific genes and activates several rod-specific genes. In humans, mutations in NR2E3 have been associated with the recessively-inherited enhanced short-wavelength sensitive S-cone syndrome (ESCS) and, recently, with autosomal dominant (ad) retinitis pigmentosa (RP) (adRP). In the present work, we describe two additional families affected by adRP that carry a heterozygous c.166G&gt;A (p.G56R) mutation in the NR2E3 gene. Functional analysis determined the dominant negative activity of the p.G56R mutant protein as the molecular mechanism of adRP. Interestingly, in one pedigree, the most common causal variant for ESCS (p.R311Q) cosegregated with the adRP-linked p.G56R mutation, and the compound heterozygotes exhibited an ESCS-like phenotype, which in 1 of the 2 cases was strikingly "milder" than the patients carrying the p.G56R mutation alone. Impaired repression of cone-specific genes by the corepressors atrophin-1 (dentatorubral-pallidoluysian atrophy [DRPLA] gene product) and atrophin-2 (arginine-glutamic acid dipeptide repeat [RERE] protein) appeared to be a molecular mechanism mediating the beneficial effect of the p.R311Q mutation. Finally, the functional dominance of the p.R311Q variant to the p.G56R mutation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CAP1/Prss8 is a membrane-bound serine protease involved in the regulation of several different effectors, such as the epithelial sodium channel ENaC, the protease-activated receptor PAR2, the tight junction proteins, and the profilaggrin polypeptide. Recently, the V170D and the G54-P57 deletion mutations within the CAP1/Prss8 gene, identified in mouse frizzy (fr) and rat hairless (fr(CR)) animals, respectively, have been proposed to be responsible for their skin phenotypes. In the present study, we analyzed those mutations, revealing a change in the protein structure, a modification of the glycosylation state, and an overall reduction in the activation of ENaC of the two mutant proteins. In vivo analyses demonstrated that both fr and fr(CR) mutant animals present analogous reduction of embryonic viability, similar histologic aberrations at the level of the skin, and a significant decrease in the activity of ENaC in the distal colon compared with their control littermates. Hairless rats additionally had dehydration defects in skin and intestine and significant reduction in the body weight. In conclusion, we provided molecular and functional evidence that CAP1/Prss8 mutations are accountable for the defects in fr and fr(CR) animals, and we furthermore demonstrate a decreased function of the CAP1/Prss8 mutant proteins. Therefore, fr and fr(CR) animals are suitable models to investigate the consequences of CAP1/Prss8 action on its target proteins in the whole organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified C7orf11, which localizes to the nucleus and is expressed in fetal hair follicles, as the first disease gene for nonphotosensitive trichothiodystrophy (TTD). C7orf11 maps to chromosome 7p14, and the disease locus has been designated "TTDN1" (TTD nonphotosensitive 1). Mutations were found in patients with Amish brittle-hair syndrome and in other nonphotosensititive TTD cases with mental retardation and decreased fertility but not in patients with Sabinas syndrome or Pollitt syndrome. Therefore, genetic heterogeneity in nonphotosensitive TTD is a feature similar to that observed in photosensitive TTD, which is caused by mutations in transcription factor II H (TFIIH) subunit genes. Comparative immunofluorescence analysis, however, suggests that C7orf11 does not influence TFIIH directly. Given the absence of cutaneous photosensitivity in the patients with C7orf11 mutations, together with the protein's nuclear localization, C7orf11 may be involved in transcription but not DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To identify the genetic causes underlying autosomal recessive retinitis pigmentosa (arRP) and to describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: Three hundred forty-seven unrelated families affected by arRP and 33 unrelated families affected by retinitis pigmentosa (RP) plus noncongenital and progressive hearing loss, ataxia, or both, respectively. METHODS: A whole exome sequencing (WES) analysis was performed in 2 families segregating arRP. A mutational screening was performed in 378 additional unrelated families for the exon-intron boundaries of the ABHD12 gene. To establish a genotype-phenotype correlation, individuals who were homozygous or compound heterozygotes of mutations in ABHD12 underwent exhaustive clinical examinations by ophthalmologists, neurologists, and otologists. MAIN OUTCOME MEASURES: DNA sequence variants, best-corrected visual acuity, visual field assessments, electroretinogram responses, magnetic resonance imaging, and audiography. RESULTS: After a WES analysis, we identified 4 new mutations (p.Arg107Glufs*8, p.Trp159*, p.Arg186Pro, and p.Thr202Ile) in ABHD12 in 2 families (RP-1292 and W08-1833) previously diagnosed with nonsyndromic arRP, which cosegregated with the disease among the family members. Another homozygous mutation (p.His372Gln) was detected in 1 affected individual (RP-1487) from a cohort of 378 unrelated arRP and syndromic RP patients. After exhaustive clinical examinations by neurologists and otologists, the 4 affected members of the RP-1292 had no polyneuropathy or ataxia, and the sensorineural hearing loss and cataract were attributed to age or the normal course of the RP, whereas the affected members of the families W08-1833 and RP-1487 showed clearly symptoms associated with polyneuropathy, hearing loss, cerebellar ataxia, RP, and early-onset cataract (PHARC) syndrome. CONCLUSIONS: Null mutations in the ABHD12 gene lead to PHARC syndrome, a neurodegenerative disease including polyneuropathy, hearing loss, cerebellar ataxia, RP, and early-onset cataract. Our study allowed us to report 5 new mutations in ABHD12. This is the first time missense mutations have been described for this gene. Furthermore, these findings are expanding the spectrum of phenotypes associated with ABHD12 mutations ranging from PHARC syndrome to a nonsyndromic form of retinal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Background: Cancer/testis (CT) genes are expressed only in the germ line and certain tumors and are most frequently located on the X-chromosome (the CT-X genes). Amongst the best studied CT-X genes are those encoding several MAGE protein families. The function of MAGE proteins is not well understood, but several have been shown to potentially influence the tumorigenic phenotype. Methodology/Principal Findings: We undertook a mutational analysis of coding regions of four CT-X MAGE genes, MAGEA1, MAGEA4, MAGEC1, MAGEC2 and the ubiquitously expressed MAGEE1 in human melanoma samples. We first examined cell lines established from tumors and matching blood samples from 27 melanoma patients. We found that melanoma cell lines from 37% of patients contained at least one mutated MAGE gene. The frequency of mutations in the coding regions of individual MAGE genes varied from 3.7% for MAGEA1 and MAGEA4 to 14.8% for MAGEC2. We also examined 111 fresh melanoma samples collected from 86 patients. In this case, samples from 32% of the patients exhibited mutations in one or more MAGE genes with the frequency of mutations in individual MAGE genes ranging from 6% in MAGEA1 to 16% in MAGEC1. Significance: These results demonstrate for the first time that the MAGE gene family is frequently mutated in melanoma.