177 resultados para TECHNIQUES: RADIAL VELOCITIES
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: The radial artery is routinely used as a graft for surgical arterial myocardial revascularization. The proximal radial artery anastomosis site remains unknown. In this study, we analyzed the short-term results and the operative risk determinants after having used four different common techniques for radial artery implantation. METHODS: From January 2000 to December 2004, 571 patients underwent coronary artery bypass grafting with radial arteries. Data were analyzed for the entire population and for subgroups following the proximal radial artery anastomosis site: 140 T-graft with the mammary artery (group A), 316 free-grafts with the proximal anastomosis to the ascending aorta (group B), 55 mammary arteries in situ elongated with the radial artery (group C) and 60 radial arteries elongated with a piece of mammary artery and anastomosed to the ascending aorta (group D). RESULTS: The mean age was 53.8 +/- 7.7 years; 55.5% of patients had a previous myocardial infarction and 73% presented with a satisfactory left ventricular function. A complete arterial myocardial revascularization was achieved in 532 cases (93.2%) and 90.2% of the procedures were performed under cardiopulmonary bypass and cardioplegic arrest. The operative mortality rate was 0.9%, a postoperative myocardial infarction was diagnosed in 19 patients (3.3%), an intra-aortic balloon pump was used in 10 patients (1.7%) and a mechanical circulatory device was implanted in 2 patients. The radial artery harvesting site remained always free from complications. The proximal radial artery anastomosis site was not a determinant of early hospital mortality. Group C showed a higher risk of postoperative myocardial infarction (p = 0.09), together with female gender (p = 0.003), hypertension (p = 0.059) and a longer cardiopulmonary bypass time. CONCLUSIONS: The radial artery and the mammary artery can guarantee multiple arterial revascularization also for patients with contraindications to double mammary artery use. The four most common techniques for proximal radial artery anastomosis are not related to a higher operative risk and they can be used alternatively to reach the best surgical results
Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction.
Resumo:
Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.
Resumo:
L'imagerie par résonance magnétique (IRM) peut fournir aux cardiologues des informations diagnostiques importantes sur l'état de la maladie de l'artère coronarienne dans les patients. Le défi majeur pour l'IRM cardiaque est de gérer toutes les sources de mouvement qui peuvent affecter la qualité des images en réduisant l'information diagnostique. Cette thèse a donc comme but de développer des nouvelles techniques d'acquisitions des images IRM, en changeant les techniques de compensation du mouvement, pour en augmenter l'efficacité, la flexibilité, la robustesse et pour obtenir plus d'information sur le tissu et plus d'information temporelle. Les techniques proposées favorisent donc l'avancement de l'imagerie des coronaires dans une direction plus maniable et multi-usage qui peut facilement être transférée dans l'environnement clinique. La première partie de la thèse s'est concentrée sur l'étude du mouvement des artères coronariennes sur des patients en utilisant la techniques d'imagerie standard (rayons x), pour mesurer la précision avec laquelle les artères coronariennes retournent dans la même position battement après battement (repositionnement des coronaires). Nous avons découvert qu'il y a des intervalles dans le cycle cardiaque, tôt dans la systole et à moitié de la diastole, où le repositionnement des coronaires est au minimum. En réponse nous avons développé une nouvelle séquence d'acquisition (T2-post) capable d'acquérir les données aussi tôt dans la systole. Cette séquence a été testée sur des volontaires sains et on a pu constater que la qualité de visualisation des artère coronariennes est égale à celle obtenue avec les techniques standard. De plus, le rapport signal sur bruit fourni par la séquence d'acquisition proposée est supérieur à celui obtenu avec les techniques d'imagerie standard. La deuxième partie de la thèse a exploré un paradigme d'acquisition des images cardiaques complètement nouveau pour l'imagerie du coeur entier. La technique proposée dans ce travail acquiert les données sans arrêt (free-running) au lieu d'être synchronisée avec le mouvement cardiaque. De cette façon, l'efficacité de la séquence d'acquisition est augmentée de manière significative et les images produites représentent le coeur entier dans toutes les phases cardiaques (quatre dimensions, 4D). Par ailleurs, l'auto-navigation de la respiration permet d'effectuer cette acquisition en respiration libre. Cette technologie rend possible de visualiser et évaluer l'anatomie du coeur et de ses vaisseaux ainsi que la fonction cardiaque en quatre dimensions et avec une très haute résolution spatiale et temporelle, sans la nécessité d'injecter un moyen de contraste. Le pas essentiel qui a permis le développement de cette technique est l'utilisation d'une trajectoire d'acquisition radiale 3D basée sur l'angle d'or. Avec cette trajectoire, il est possible d'acquérir continûment les données d'espace k, puis de réordonner les données et choisir les paramètres temporel des images 4D a posteriori. L'acquisition 4D a été aussi couplée avec un algorithme de reconstructions itératif (compressed sensing) qui permet d'augmenter la résolution temporelle tout en augmentant la qualité des images. Grâce aux images 4D, il est possible maintenant de visualiser les artères coronariennes entières dans chaque phase du cycle cardiaque et, avec les mêmes données, de visualiser et mesurer la fonction cardiaque. La qualité des artères coronariennes dans les images 4D est la même que dans les images obtenues avec une acquisition 3D standard, acquise en diastole Par ailleurs, les valeurs de fonction cardiaque mesurées au moyen des images 4D concorde avec les valeurs obtenues avec les images 2D standard. Finalement, dans la dernière partie de la thèse une technique d'acquisition a temps d'écho ultra-court (UTE) a été développée pour la visualisation in vivo des calcifications des artères coronariennes. Des études récentes ont démontré que les acquisitions UTE permettent de visualiser les calcifications dans des plaques athérosclérotiques ex vivo. Cepandent le mouvement du coeur a entravé jusqu'à maintenant l'utilisation des techniques UTE in vivo. Pour résoudre ce problème nous avons développé une séquence d'acquisition UTE avec trajectoire radiale 3D et l'avons testée sur des volontaires. La technique proposée utilise une auto-navigation 3D pour corriger le mouvement respiratoire et est synchronisée avec l'ECG. Trois échos sont acquis pour extraire le signal de la calcification avec des composants au T2 très court tout en permettant de séparer le signal de la graisse depuis le signal de l'eau. Les résultats sont encore préliminaires mais on peut affirmer que la technique développé peut potentiellement montrer les calcifications des artères coronariennes in vivo. En conclusion, ce travail de thèse présente trois nouvelles techniques pour l'IRM du coeur entier capables d'améliorer la visualisation et la caractérisation de la maladie athérosclérotique des coronaires. Ces techniques fournissent des informations anatomiques et fonctionnelles en quatre dimensions et des informations sur la composition du tissu auparavant indisponibles. CORONARY artery magnetic resonance imaging (MRI) has the potential to provide the cardiologist with relevant diagnostic information relative to coronary artery disease of patients. The major challenge of cardiac MRI, though, is dealing with all sources of motions that can corrupt the images affecting the diagnostic information provided. The current thesis, thus, focused on the development of new MRI techniques that change the standard approach to cardiac motion compensation in order to increase the efficiency of cardioavscular MRI, to provide more flexibility and robustness, new temporal information and new tissue information. The proposed approaches help in advancing coronary magnetic resonance angiography (MRA) in the direction of an easy-to-use and multipurpose tool that can be translated to the clinical environment. The first part of the thesis focused on the study of coronary artery motion through gold standard imaging techniques (x-ray angiography) in patients, in order to measure the precision with which the coronary arteries assume the same position beat after beat (coronary artery repositioning). We learned that intervals with minimal coronary artery repositioning occur in peak systole and in mid diastole and we responded with a new pulse sequence (T2~post) that is able to provide peak-systolic imaging. Such a sequence was tested in healthy volunteers and, from the image quality comparison, we learned that the proposed approach provides coronary artery visualization and contrast-to-noise ratio (CNR) comparable with the standard acquisition approach, but with increased signal-to-noise ratio (SNR). The second part of the thesis explored a completely new paradigm for whole- heart cardiovascular MRI. The proposed techniques acquires the data continuously (free-running), instead of being triggered, thus increasing the efficiency of the acquisition and providing four dimensional images of the whole heart, while respiratory self navigation allows for the scan to be performed in free breathing. This enabling technology allows for anatomical and functional evaluation in four dimensions, with high spatial and temporal resolution and without the need for contrast agent injection. The enabling step is the use of a golden-angle based 3D radial trajectory, which allows for a continuous sampling of the k-space and a retrospective selection of the timing parameters of the reconstructed dataset. The free-running 4D acquisition was then combined with a compressed sensing reconstruction algorithm that further increases the temporal resolution of the 4D dataset, while at the same time increasing the overall image quality by removing undersampling artifacts. The obtained 4D images provide visualization of the whole coronary artery tree in each phases of the cardiac cycle and, at the same time, allow for the assessment of the cardiac function with a single free- breathing scan. The quality of the coronary arteries provided by the frames of the free-running 4D acquisition is in line with the one obtained with the standard ECG-triggered one, and the cardiac function evaluation matched the one measured with gold-standard stack of 2D cine approaches. Finally, the last part of the thesis focused on the development of ultrashort echo time (UTE) acquisition scheme for in vivo detection of calcification in the coronary arteries. Recent studies showed that UTE imaging allows for the coronary artery plaque calcification ex vivo, since it is able to detect the short T2 components of the calcification. The heart motion, though, prevented this technique from being applied in vivo. An ECG-triggered self-navigated 3D radial triple- echo UTE acquisition has then been developed and tested in healthy volunteers. The proposed sequence combines a 3D self-navigation approach with a 3D radial UTE acquisition enabling data collection during free breathing. Three echoes are simultaneously acquired to extract the short T2 components of the calcification while a water and fat separation technique allows for proper visualization of the coronary arteries. Even though the results are still preliminary, the proposed sequence showed great potential for the in vivo visualization of coronary artery calcification. In conclusion, the thesis presents three novel MRI approaches aimed at improved characterization and assessment of atherosclerotic coronary artery disease. These approaches provide new anatomical and functional information in four dimensions, and support tissue characterization for coronary artery plaques.
Resumo:
BACKGROUND: Reconstruction of the central aortic pressure wave from the noninvasive recording of the radial pulse with applanation tonometry has become a standard tool in the field of hypertension. It is not presently known whether recording the radial pulse on the dominant or the nondominant side has any effect on such reconstruction. METHOD: We carried out radial applanation tonometry on both forearms in young, healthy, male volunteers, who were either sedentary (n = 11) or high-level tennis players (n = 10). The purpose of including tennis players was to investigate individuals with extreme asymmetry between the dominant and nondominant upper limb. RESULTS: In the sedentary individuals, forearm circumference and handgrip strength were slightly larger on the dominant (mean +/- SD respectively 27.9 +/- 1.5 cm and 53.8 +/- 10 kg) than on nondominant side (27.3 +/- 1.6 cm, P < 0.001 vs. dominant, and 52.1 +/- 11 kg, P = NS). In the tennis players, differences between sides were more conspicuous (forearm circumference: dominant 28.0 +/- 1.7 cm nondominant 26.4 +/- 1.5 cm, P < 0.001; handgrip strength 61.4 +/- 10.8 vs. 53.4 +/- 9.7 kg, P < 0.001). We found that in both sedentary individuals and tennis players, the radial pulse had identical shape on both sides and, consequently, the reconstructed central aortic pressure waveforms, as well as derived indices of central pulsatility, were not dependent on the side where applanation tonometry was carried out. CONCLUSION: Evidence from individuals with maximal asymmetry of dominant vs. nondominant upper limb indicates that laterality of measurement is not a methodological issue for central pulse wave analysis carried out with radial applanation tonometry.
Resumo:
Reconstructive surgery takes an important place in breast cancer treatment. Immediate breast reconstruction is performed during the same operation as mastectomy. It is contraindicated following radiotherapy. Reconstruction performed after mastectomy is called differed breast reconstruction. It is completed 6 months after chemotherapy and 1 year after radiotherapy. Prosthetic breast reconstruction is indicated when tissues are of good qualities and breast are small. Autologous reconstruction is performed in case of radiotherapy or large breast. After breast reconstruction, imperfections can be corrected with autologous fat injection.
Resumo:
Forensic scientists have long detected the presence of drugs and their metabolites in biological materials using body fluids such as urine, blood and/or other biological liquids or tissues. For doping analysis, only urine has so far been collected. In recent years, remarkable advances in sensitive analytical techniques have encouraged the analysis of drugs in unconventional biological samples such as hair, saliva and sweat. These samples are easily collected, although drug levels are often lower than the corresponding levels in urine or blood. This chapter reviews recent studies in the detection of doping agents in hair, saliva and sweat. Sampling, analytical procedures and interpretation of the results are discussed in comparison with those obtained from urine and blood samples.
Resumo:
AIM: To discuss the use of new ultrasonic techniques that make it possible to visualize elastic (carotid) and muscular (radial) capacitance arteries non-invasively. RESULTS OF DATA REVIEW: Measurements of carotid wall thickness and the detection of atheromas are related to arterial pressure, to other risk factors and to the risk of subsequent complications. The use of high-frequency ultrasound (7.5-10 MHz), measurements of far wall thicknesses in areas free of atheromas at end-diastole (by ECG gating or pressure waveform recording) and descriptions of the size and characteristics of atherosclerotic plaques allow a non-invasive assessment of vascular hypertrophy and atherosclerosis in hypertensive patients. CONCLUSIONS: Careful attention to methodologic and physiologic factors is needed to provide accurate information about the anatomy of the dynamically pulsating arterial tree.
Resumo:
Neuroimaging techniques provide valuable tools for diagnosing Alzheimer's disease (AD), monitoring disease progression and evaluating responses to treatment. There is currently a wide array of techniques available including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and, for recording electrical brain activity, electroencephalography (EEG). The choice of technique depends on the contrast between tissues of interest, spatial resolution, temporal resolution, requirements for functional data and the probable number of scans required. For example, while PET, CT and MRI can be used to differentiate between AD and other dementias, MRI is safer and provides better contrast of soft tissues. Neuroimaging is a technique spanning many disciplines and requires effective communication between doctors requesting a scan of a patient or group of patients and those with technical expertise. Consideration and discussion of the most suitable type of scan and the necessary settings to achieve the best results will help ensure appropriate techniques are chosen and used effectively. Neuroimaging techniques are currently expanding understanding of the structural and functional changes that occur in dementia. Further research may allow identification of early neurological signs ofAD, before clinical symptoms are evident, providing the opportunity to test preventative therapies. CombiningMRI and machine learning techniques may be a powerful approach to improve diagnosis ofAD and to predict clinical outcomes.
Resumo:
OBJECTIVE: To evaluate the impact of body position on the arterial stiffness indices provided by radial applanation tonometry in pregnant and nonpregnant women. METHODS: Twenty-four young women (18-30 years) in the third trimester of a normal pregnancy and 20 healthy nonpregnant women of the same age were enrolled. In each, applanation tonometry was carried out in the sitting and supine position. The following stiffness indices were analyzed: systolic augmentation index (sAix), sAix adjusted for heart rate (sAix@75) and diastolic augmentation index (dAix), all expressed in % of central aortic pulse pressure. RESULTS: The sAix was apparently not influenced by body position, but the transition from seated to supine was associated with a substantial decrease in heart rate. When correcting for this confounder by calculating the sAix@75, systolic augmentation was substantially lower when individuals were supine (mean ± SD: nonpregnant 3.0 ± 14.4%, pregnant 8.8 ± 9.7%) than when they were sitting (nonpregnant 5.7 ± 13.0%, pregnant 11.1 ± 83%, P = 0.005 supine vs. seated in both study groups, P > 0.2 for pregnant vs. nonpregnant). The influence of body position on the dAix went in the opposite direction (supine: nonpregnant 9.7 ± 6.6%, pregnant 4.4 ± 3.5%; seated: nonpregnant 7.7 ± 5.8%, pregnant 3.3 ± 2.4%, P < 0.00001 supine vs. seated in both study groups, P = 0.001 for pregnant vs. nonpregnant). CONCLUSION: Body position has a major impact on the pattern of central aortic pressure augmentation by reflected waves in healthy young women examined either during third trimester pregnancy or in the nonpregnant state.
Resumo:
The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.