4 resultados para Systematics

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dispersal process, by which individuals or other dispersing agents such as gametes or seeds move from birthplace to a new settlement locality, has important consequences for the dynamics of genes, individuals, and species. Many of the questions addressed by ecology and evolutionary biology require a good understanding of species' dispersal patterns. Much effort has thus been devoted to overcoming the difficulties associated with dispersal measurement. In this context, genetic tools have long been the focus of intensive research, providing a great variety of potential solutions to measuring dispersal. This methodological diversity is reviewed here to help (molecular) ecologists find their way toward dispersal inference and interpretation and to stimulate further developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pygmy Shrews in North America have variously been considered to be one species (Sorex hoyi) or two species (S. hoyi and S. thompsoni). Currently, only S. hoyi is recognized. In this study, we examine mitochondrial DNA sequence data for the cytochrome b gene to evaluate the level of differentiation and phylogeographic relationships among eleven samples of Pygmy Shrews from across Canada. Pygmy Shrews from eastern Canada (i.e., Ontario, Quebec, New Brunswick, Nova Scotia, and Prince Edward Island) are distinct from Pygmy Shrews from western Canada (Alberta, Yukon) and Alaska. The average level of sequence divergence between these clades (3.3%) falls within the range of values for other recognized pairs of sister species of shrews. A molecular clock based on third position transversion substitutions suggests that these two lineages diverged between 0.44 and 1.67 million years ago. These molecular phylogenetic data. combined with a reinterpretation of previously published morphological data, are suggestive of separate species status for S. hoyi and S. thompsoni as has been previously argued by others. Further analysis of specimens from geographically intermediate areas (e.g., Manitoba. northern Ontario) is required to determine if there is secondary contact and/or introgression between these two putative species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.