107 resultados para Synapses GABAergiques
em Université de Lausanne, Switzerland
Resumo:
RESUME Les follicules des vibrisses des rongeurs sont représentés sous la forme d'une carte topographique dans le cortex à tonneaux. Lorsque un groupe de vibrisses est coupé pendant plusieurs jours chez un rongeur adulte, en laissant les autres vibrisses intactes, le champ réceptif des neurones du cortex à tonneaux est modifié, ce qui démontre que les cartes corticales sont plastiques. Dans notre étude, une expérience sensorielle a été induite chez une souris adulte se comportant librement en stimulant chroniquement une de ses vibrisses pendant 24h. Par une analyse des potentiels de champ locaux, nous démontrons que les caractéristiques spatiotemporelles du flux d'excitation évoqué par la vibrisse principale (VP) dans la colonne corticale correspondante à la vibrisse stimulée n'est pas altéré. Par contre, l'enregistrement des potentiels d'actions d'un total de 1041 neurones à travers le cortex à tonneaux révèlent plusieurs modifications de l'activité neuronale. L'activité spontanée ainsi que la réponse évoquée par la VP sont déprimées dans la colonne corticale stimulée (nombre moyen de potentiels d'action évoqués par la VP diminue de 25 % et 36% dans la couche IV et les couches II&III). La réponse des neurones à la vibrisse stimulée diminue également dans les colonnes corticales adjacentes, «non-stimulées». La dépression de l'activité spontanée et de la réponse à la VP est localisée à la colonne corticale stimulée. Dans le tonneau stimulé, la première partie de la réponse à la VP n'est pas affaiblie, démontrant que la dépression de la réponse n'est pas due à un phénomène de plasticité sous-corticale ou thalamocorticale. La stimulation chronique d'une vibrisse entraîne une augmentation du nombre de synapses GABAergiques dans la couche IV du tonneau correspondant (Knott et al, 2002). Dès lors, nos résultats suggèrent qu'une augmentation de l'inhibition dans le tonneau stimulé serait à l'origine de la diminution des potentiels d'action évoqués par la vibrisse stimulée et en conséquence de l'amplitude du flux d'excitation vers les couches II&III puis vers les colonnes corticales adjacentes. Toutes les réponses des neurones du tonneau stimulé ne sont pas déprimées. Les réponses des neurones à la vibrisse voisine caudale à VP diminuent dans la couche IV (42%) et dans les couches II&III (52%) mais pas les réponses aux 7 autres vibrisses voisines. Les entrées synaptiques en provenance de la vibrisse caudale pourraient avoir été spécifiquement déprimées en raison d'une décorrélation prolongée entre l'activité évoquée dans les chemins sensoriels relatifs à la vibrisse stimulée et à la vibrisse caudale, spécificité qui découlerait du fait que, parmi les vibrisses voisines à la VP, la vibrisse caudale génère les réponses les plus fortes dans la colonne corticale. Quatre jours après l'arrêt de la stimulation, l'activité neuronale n'est plus déprimée; au contraire, nous observons une potentiation des réponses à la VP dans la couche IV de la colonne corticale stimulée. De plus, nous montrons que l'expression des protéines GLT-1 et GLAST, deux transporteurs astrocytaires du glutamate, est augmentée de ~2.5 fois dans la colonne corticale stimulée, indiquant l'existence d'une «plasticité gliale» et suggérant que les cellules gliales participent activement à l'adaptation du cerveau à l'expérience. ABSTRACT In the barrel cortex, mystacial whisker follicles are represented in the form of a topographie map. The selective removal of a set of whiskers while sparing others for several days in an adult rodent alters receptive field of barrel cortex neurons, demonstrating experience-dependent plasticity of cortical maps. Here sensory experience was altered by chronic stimulation of a whisker for a 24h period in a freely behaving adult mouse. By means of an evoked local field potential analysis, we show that chronic stimulation does not alter the flow of excitation evoked by the principal whisker (PW) in the stimulated barrel column. However, the recording of neuronal firing from a total of 1041 single units throughout the barrel cortex reveals several changes in neuronal activity. Immediately after chronic stimulation, spontaneous activity as well as PW-responses are depressed in the stimulated barrel column (mean number of spikes per PW-deflection decreases by 25% and 36% in layer IV and layers II&III, respectively). Neuronal responses towards the chronically stimulated whisker are also significantly depressed in layers II&III of the adjacent "non-stimulated" barrel' columns. The depression of both spontaneous activity and PW-responses are restricted to the stimulated ban-el column. The earliest time epoch of the PW-response in the stimulated barrel is not depressed, demonstrating that the decrease of cortical responses is not due to subcortical or thalamocortical plasticity. The depression of PW-response in the stimulated barrel correlates with an increase in the number of GABAergic synapses in layer IV (Knott et al., 2002). Therefore, our results suggest that an increase in inhibition within the stimulated barrel may reduce its excitatory output and accordingly the flow of excitation towards layers and the subsequent horizontal spread into adjacent barrel columns. Not all responses of neurons in the stimulated barrel are depressed. Neuronal responses towards the caudal in-row whisker decrease by 42% in layer IV and 52% in layers MM but responses to the other 7 immediate surround whiskers (SWs) are not affected. The synaptic inputs from the SW that elicit the strongest responses in the stimulated barrel may have been specifically depressed following a prolonged period of diminished coherence between neuronal activity evoked in the pathways from the chronically stimulated whisker and from its surrounding in-row whisker. Four days after the cessation of the stimulation, depression of neuronal activity is no longer present; on the contrary, we observe a small but significant potentiation of PW-responses in layer IV of the stimulated barrel column. Moreover we show that the expression of astrocytic glutamate transporters GLT-1 and GLAST proteins were both upregulated by ~2.5 fold in the stimulated barrel column, which indicates that glial cells exhibit experience-dependent functional changes and could actively take part in the adaptation of the cerebral cortex to experience.
Resumo:
Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here, we contrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one "extrareticular" input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The contrasting synaptic arrangements of the two pathways were paralleled by different short-term plasticities. The multisite APT-thalamic pathway showed larger charge transfer during 50-100 Hz stimulation compared with the nRT pathway and a greater persistent inhibition accruing during stimulation trains. Our results demonstrate that the two inhibitory systems are morpho-functionally distinct and suggest and that multisite GABAergic terminals are tailored for maintained synaptic inhibition even at high presynaptic firing rates. These data explain the efficacy of extrareticular inhibition in timing relay cell activity in sensory and motor thalamic nuclei. Finally, based on the classic nomenclature and the difference between reticular and extrareticular terminals, we define a novel, multisite GABAergic terminal type (F3) in the thalamus.
Resumo:
Cobalt-labelled motoneuron dendrites of the frog spinal cord at the level of the second spinal nerve were photographed in the electron microscope from long series of ultrathin sections. Three-dimensional computer reconstructions of 120 dendrite segments were analysed. The samples were taken from two locations: proximal to cell body and distal, as defined in a transverse plane of the spinal cord. The dendrites showed highly irregular outlines with many 1-2 microns-long 'thorns' (on average 8.5 thorns per 100 microns 2 of dendritic area). Taken together, the reconstructed dendrite segments from the proximal sites had a total length of about 250 microns; those from the distal locations, 180 microns. On all segments together there were 699 synapses. Nine percent of the synapses were on thorns, and many more close to their base on the dendritic shaft. The synapses were classified in four groups. One third of the synapses were asymmetric with spherical vesicles; one half were symmetric with spherical vesicles; and one tenth were symmetric with flattened vesicles. A fourth, small class of asymmetric synapses had dense-core vesicles. The area of the active zones was large for the asymmetric synapses (median value 0.20 microns 2), and small for the symmetric ones (median value 0.10 microns 2), and the difference was significant. On average, the areas of the active zones of the synapses on thin dendrites were larger than those of synapses on large calibre dendrites. About every 4 microns 2 of dendritic area received one contact. There was a significant difference between the areas of the active zones of the synapses at the two locations. Moreover, the number per unit dendritic length was correlated with dendrite calibre. On average, the active zones covered more than 4% of the dendritic area; this value for thin dendrites was about twice as large as that of large calibre dendrites. We suggest that the larger active zones and the larger synaptic coverage of the thin dendrites compensate for the longer electrotonic distance of these synapses from the soma.
Resumo:
Phosphoinositides, synthesized from myo-inositol, play a critical role in the development of growth cones and in synaptic activity. As neurons cannot synthesize inositol, they take it up from the extracellular milieu. Here, we demonstrate that, in brain and PC12 cells, the recently identified H(+)/myo-inositol symporter HMIT is present in intracellular vesicles that are distinct from synaptic and dense-core vesicles. We further show that HMIT can be triggered to appear on the cell surface following cell depolarization, activation of protein kinase C or increased intracellular calcium concentrations. HMIT cell surface expression takes place preferentially in regions of nerve growth and at varicosities and leads to increased myo-inositol uptake. The symporter is then endocytosed in a dynamin-dependent manner and becomes available for a subsequent cycle of stimulated exocytosis. HMIT is thus expressed in a vesicular compartment involved in activity-dependent regulation of myo-inositol uptake in neurons. This may be essential for sustained signaling and vesicular traffic activities in growth cones and at synapses.
Resumo:
One of the most intriguing functions of the brain is the ability to learn and memorize. The mechanism through which memory and learning are expressed requires the activation of NMDA receptors (NMDARs). These molecular entities are placed at the postsynaptic density of excitatory synapses and their function is tightly controlled by the actions of several modulators at the extracellular, intracellular and pore sites. A large part of the intracellular modulation comes from the action of G-protein coupled receptors (GPCRs). Through intracellular cascades typically involving kinases and phosphatases, GPCRs potentiate or inhibit NMDARs, controlling the conductive state but also the trafficking within the synapse. The GPCRs are involved in the modulation of a variety of brain functions. Many of them control cognition, memory and learning performance, therefore, their effects on NMDARs are extensively studied. The orexinergic system signals through GPCRs and it is well known for the regulation of waking, feeding, reward and autonomic functions. Moreover, it is involved in potentiating hippocampus-related cognitive tasks. Orexin receptors and fibers are present within the hippocampus, but whether these directly modulate hippocampal cells and synapses has not yet been determined. During my thesis, I studied orexinergic actions on excitatory synaptic transmission via whole-cell patch-clamp recordings in rat acute hippocampal slices. I observed that exogenously applied orexin-A (ox-A) exerted a strong inhibitory action on NMDAR-mediated synaptic potentials at mossy fiber (MF)-CA3 synapses, by postsynaptically activating orexin-2 receptors, a minor inhibition at Schaffer collateral-CAl synapses and did not affect other synapses with the CA3 area. Moreover, I demonstrated that the susceptibility of NMDARs to ox- A depends on the tone of endogenous orexin known to fluctuate during the day-night cycle. In fact, in slices prepared during the active period of the rats, when endogenous orexin levels are high, NMDAR-currents were not affected by exogenously applied ox-A. The inhibitory effect of ox-A was, however, reverted when interfering with the orexinergic system through intraperitoneal injections of almorexant, a dual orexin receptor antagonist, during the active phase prior to slice preparation. This thesis work suggests that the orexinergic system regulates NMDAR-dependent information flow through select hippocampal pathways depending on the time-of-day. The specific orexinergic modulation of NMDARs at MFs dampens the excitability of the hippocampal circuit and could impede the mechanisms related to memory formation, possibly also following extended periods of waking. -- La capacité d'apprentissage et de mémorisation est une des fonctions les plus intrigantes de notre cerveau. Il a été montré qu'elles requièrent l'activation des récepteurs NMDA (NMDARs). Ces entités moléculaires sont présentes au niveau de la densité post-synaptique des synapses excitatrices et leur fonction est étroitement contrôlée par l'action de nombreux modulateurs au niveau extracellulaire, intracellulaire et membranaire de ces récepteurs. Une grande partie de la modulation intracellulaire s'effectue via l'action de récepteurs couplés aux protéines G (GPCRs). Grace à leurs cascades intracellulaires typiquement impliquant des kinases et des phosphatases, les GPCRs favorisent l'activation ou l'inhibition des NMDARs, contrôlant ainsi leur perméabilité mais aussi leur mouvement à la synapse. Les GPCRs sont impliquées dans de nombreuses fonctions cérébrales telles que la cognition, la mémoire ainsi que la capacité d'apprentissage c'est pour cela que leurs effets sur les NMDARs sont très étudiés. Le système orexinergique fait intervenir ces GPCRs et est connu par son rôle dans la régulation de fonctions physiologiques telles que l'éveil, la prise alimentaire, la récompense ainsi que d'autres fonctions du système nerveux autonome. De plus, ce système est impliqué dans la régulation de tâches cognitives liées à l'hippocampe. Bien que les fibres et les récepteurs à l'orexine soient présents dans l'hippocampe, leur mécanisme d'action sur les cellules et les synapses de l'hippocampe n'a pas encore été élucidé. Durant ma thèse, je me suis intéressée aux effets de l'orexine sur la transmission synaptique excitatrice en utilisant la méthode d'enregistrement en patch-clamp en configuration cellule entière sur des tranches aiguës d'hippocampes de rats. J'ai observé que l'application exogène d'orexine A d'une part inhibe fortement les courants synaptiques dépendants de l'activation des NMDARs au niveau de la synapse entre les fibres moussues et CA3 via l'activation post-synaptique des orexine récepteurs 2 mais d'autre part n'inhibe que de façon mineure la synapse entre les collatérales de Schaffer et CAI et n'affecte pas les autres synapses impliquant CA3. J'ai également démontré que la sensibilité des NMDARs à l'orexine A dépend de sa concentration endogène qui fluctue durant le cycle éveil-sommeil. En effet, lorsque les coupes d'hippocampes sont préparées durant la période active de l'animal correspondant à un niveau endogène d'orexine élevé, l'application exogène d'orexine A n'a aucun effet sur les courants dépendants de l'activation des NMDARs. Cependant, l'injection dans le péritoine, durant la phase active de l'animal, d'un antagoniste des orexine récepteurs, l'almorexant, va supprimer l'effet inhibiteur de l'orexine A. Les résultats de ma thèse suggèrent donc que le système orexinergique module les informations véhiculées par les NMDARs via des voies de signalisation sélectives de l'hippocampe en fonction du moment de la journée. La modulation orexinergique des NMDARs au niveau des fibres moussues diminue ainsi l'excitabilité du circuit hippocampal et pourrait entraver les mécanismes liés à la formation de la mémoire, potentiellement après de longues périodes d'éveil.
Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.
Resumo:
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Resumo:
A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.
Resumo:
Neurons and astrocytes, the two major cell populations in the adult brain, are characterized by their own mode of intercellular communication--the synapses and the gap junctions (GJ), respectively. In addition, there is increasing evidence for dynamic and metabolic neuroglial interactions resulting in the modulation of synaptic transmission at the so-called "tripartite synapse". Based on this, we have investigated at the ultrastructural level how excitatory synapses (ES) and astroglial GJ are spatially distributed in layer IV of the barrel cortex of the adult mouse. We used specific antibodies for connexin (Cx) 30 and 43 to identify astroglial GJ, these two proteins are known to be present in the majority of astroglial GJ in the cerebral cortex. In electron-microscopic images, we measured the distance between two ES, between two GJ and between a GJ and its nearest ES. We found a ratio of two GJ per three ES in the hollow and septal areas. Taking into account the size of an astrocyte domain, the high density of GJ suggests the occurrence of reflexive type, i.e. GJ between processes of the same astrocyte. Interestingly, the distance between an ES and an astroglial GJ was found to be significantly lower than that between either two synapses or between two GJ. These observations indicate that the two modes of cell-to-cell communication are not randomly distributed in layer IV of the barrel cortex. Consequently, this feature may provide the morphological support for the recently reported functional interactions between neuronal circuits and astroglial networks.
Resumo:
With the aid of the cobalt labelling technique, frog spinal cord motor neuron dendrites of the subpial dendritic plexus have been identified in serial electron micrographs. Computer reconstructions of various lengths (2.5-9.8 micron) of dendritic segments showed the contours of these dendrites to be highly irregular, and to present many thorn-like projections 0.4-1.8 micron long. Number, size and distribution of synaptic contacts were also determined. Almost half of the synapses occurred at the origins of the thorns and these synapses had the largest contact areas. Only 8 out of 54 synapses analysed were found on thorns and these were the smallest. For the total length of reconstructed dendrites there was, on average, one synapse per 1.2 micron, while 4.4% of the total dendritic surface was covered with synaptic contacts. The functional significance of these distal dendrites and their capacity to influence the soma membrane potential is discussed.
Resumo:
RESUME GRAND PUBLICLe cerveau est composé de différents types cellulaires, dont les neurones et les astrocytes. Faute de moyens pour les observer, les astrocytes sont très longtemps restés dans l'ombre alors que les neurones, bénéficiant des outils ad hoc pour être stimulés et étudiés, ont fait l'objet de toutes les attentions. Le développement de l'imagerie cellulaire et des outils fluorescents ont permis d'observer ces cellules non électriquement excitables et d'obtenir des informations qui laissent penser que ces cellules sont loin d'être passives et participent activement au fonctionnement cérébral. Cette participation au fonctionnement cérébral se fait en partie par le biais de la libération de substances neuro-actives (appellées gliotransmetteurs) que les astrocytes libèrent à proximité des synapses permettant ainsi de moduler le fonctionnement neuronal. Cette libération de gliotransmetteurs est principalement causée par l'activité neuronale que les astrocytes sont capables de sentir. Néanmoins, nous savons encore peu de chose sur les propriétés précises de la libération des gliotransmetteurs. Comprendre les propriétés spatio-temporelles de cette libération est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. En utilisant des outils fluorescents récemment développés et en combinant différentes techniques d'imagerie cellulaire, nous avons pu obtenir des informations très précises sur la libération de ces gliotransmetteurs par les astrocytes. Nous avons ainsi confirmé que cette libération était un processus très rapide et qu'elle était contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit une organisation complexe de la machinerie supportant la libération des gliotransmetteurs. Cette organisation complexe semble être à la base de la libération extrêmement rapide des gliotransmetteurs. Cette rapidité de libération et cette complexité structurelle semblent indiquer que les astrocytes sont des cellules particulièrement adaptées à une communication rapide et qu'elles peuvent, au même titre que les neurones dont elles seraient les partenaires légitimes, participer à la transmission et à l'intégration de l'information cérébrale.RESUMEDe petites vésicules, les « SLMVs » ou « Synaptic Like MicroVesicles », exprimant des transporteurs vésiculaires du glutamate (VGluTs) et libérant du glutamate par exocytose régulée, ont récemment été décrites dans les astrocytes en culture et in situ. Néanmoins, nous savons peu de chose sur les propriétés précises de la sécrétion de ces SLMVs. Contrairement aux neurones, le couplage stimulussécrétion des astrocytes n'est pas basé sur l'ouverture des canaux calciques membranaires mais nécessite l'intervention de seconds messagers et la libération du calcium par le reticulum endoplasmique (RE). Comprendre les propriétés spatio-temporelles de la sécrétion astrocytaire est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. Nous avons utilisé des outils fluorescents récemment développés pour étudier le recyclage des vésicules synaptiques glutamatergiques comme les colorants styryles et la pHluorin afin de pouvoir suivre la sécrétion des SLMVs à l'échelle de la cellule mais également à l'échelle des évènements. L'utilisation combinée de l'épifluorescence et de la fluorescence à onde évanescente nous a permis d'obtenir une résolution temporelle et spatiale sans précédent. Ainsi avons-nous confirmé que la sécrétion régulée des astrocytes était un processus très rapide (de l'ordre de quelques centaines de millisecondes). Nous avons découvert que cette sécrétion est contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit des compartiments cytosoliques délimités par le RE à proximité de la membrane plasmique et contenant les SLMVs. Cette organisation semble être à la base du couplage rapide entre l'activation des GPCRs et la sécrétion. L'existence de compartiments subcellulaires indépendants permettant de contenir les messagers intracellulaires et de limiter leur diffusion semble compenser de manière efficace la nonexcitabilité électrique des astrocytes. Par ailleurs, l'existence des différents pools de vésicules recrutés séquentiellement et fusionnant selon des modalités distinctes ainsi que l'existence de mécanismes permettant le renouvellement de ces pools lors de la stimulation suggèrent que les astrocytes peuvent faire face à une stimulation soutenue de leur sécrétion. Ces données suggèrent que la libération de gliotransmetteurs par exocytose régulée n'est pas seulement une propriété des astrocytes en culture mais bien le résultat d'une forte spécialisation de ces cellules pour la sécrétion. La rapidité de cette sécrétion donne aux astrocytes toutes les compétences pour pouvoir intervenir de manière active dans la transmission et l'intégration de l'information.ABSTRACTRecently, astrocytic synaptic like microvesicles (SLMVs), that express vesicular glutamate transporters (VGluTs) and are able to release glutamate by Ca2+-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Nevertheless, little is known about the specific properties of regulated secretion in astrocytes. Important differences may exist between astrocytic and neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We took advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses like styryl dyes and pHluorin in order to follow exocytosis and endocytosis of SLMVs at the level of the entire cell or at the level of single event. We combined epifluorescence and total internal reflection fluorescence imaging to investigate, with unprecedented temporal and spatial resolution, the events underlying the stimulus-secretion in astrocytes. We confirmed that exo-endocytosis process in astrocytes proceeds with a time course on the millisecond time scale. We discovered that SLMVs exocytosis is controlled by local and fast Ca2+ elevations; indeed submicrometer cytosolic compartments delimited by endoplasmic reticulum (ER) tubuli reaching beneath the plasma membrane and containing SLMVs. Such complex organization seems to support the fast stimulus-secretion coupling reported here. Independent subcellular compartments formed by ER, SLMVs and plasma membrane containing intracellular messengers and limiting their diffusion seem to compensate efficiently the non-electrical excitability of astrocytes. Moreover, the existence of two pools of SLMVs which are sequentially recruited suggests a compensatory mechanisms allowing the refill of SLMVs and supporting exocytosis process over a wide range of multiple stimuli. These data suggest that regulated secretion is not only a feature of cultured astrocytes but results from a strong specialization of these cells. The rapidity of secretion demonstrates that astrocytes are able to actively participate in brain information transmission and processing.
Resumo:
Background Alzheimer's disease (AD) is the leading form of dementia worldwide. The Aß-peptide is believed to be the major pathogenic compound of the disease. Since several years it is hypothesized that Aß impacts the Wnt signaling cascade and therefore activation of this signaling pathway is proposed to rescue the neurotoxic effect of Aß. Findings Expression of the human Aß42 in the Drosophila nervous system leads to a drastically shortened life span. We found that the action of Aß42 specifically in the glutamatergic motoneurons is responsible for the reduced survival. However, we find that the morphology of the glutamatergic larval neuromuscular junctions, which are widely used as the model for mammalian central nervous system synapses, is not affected by Aß42 expression. We furthermore demonstrate that genetic activation of the Wnt signal transduction pathway in the nervous system is not able to rescue the shortened life span or a rough eye phenotype in Drosophila. Conclusions Our data confirm that the life span is a useful readout of Aß42 induced neurotoxicity in Drosophila; the neuromuscular junction seems however not to be an appropriate model to study AD in flies. Additionally, our results challenge the hypothesis that Wnt signaling might be implicated in Aß42 toxicity and might serve as a drug target against AD.
Resumo:
Altered synaptic function is considered one of the first features of Alzheimer disease (AD). Currently, no treatment is available to prevent the dysfunction of excitatory synapses in AD. Identification of the key modulators of synaptopathy is of particular significance in the treatment of AD. We here characterized the pathways leading to synaptopathy in TgCRND8 mice and showed that c-Jun N-terminal kinase (JNK) is activated at the spine prior to the onset of cognitive impairment. The specific inhibition of JNK, with its specific inhibiting peptide D-JNKI1, prevented synaptic dysfunction in TgCRND8 mice. D-JNKI1 avoided both the loss of postsynaptic proteins and glutamate receptors from the postsynaptic density and the reduction in size of excitatory synapses, reverting their dysfunction. This set of data reveals that JNK is a key signaling pathway in AD synaptic injury and that its specific inhibition offers an innovative therapeutic strategy to prevent spine degeneration in AD.
Resumo:
Type 1 diabetes can affect hippocampal function triggering cognitive impairment through unknown mechanisms. Caffeine consumption prevents hippocampal degeneration and memory dysfunction upon different insults and is also known to affect peripheral glucose metabolism. Thus we now characterized glucose transport and the neurochemical profile in the hippocampus of streptozotocin-induced diabetic rats using in vivo(1)H NMR spectroscopy and tested the effect of caffeine consumption thereupon. We found that hippocampal glucose content and transport were unaltered in diabetic rats, irrespective of caffeine consumption. However diabetic rats displayed alterations in their hippocampal neurochemical profile, which were normalized upon restoration of normoglycaemia, with the exception of myo-inositol that remained increased (36 +/- 5%, p < 0.01 compared to controls) likely reflecting osmolarity deregulation. Compared to controls, caffeine-consuming diabetic rats displayed increased hippocampal levels of myo-inositol (15 +/- 5%, p < 0.05) and taurine (23 +/- 4%, p < 0.01), supporting the ability of caffeine to control osmoregulation. Compared to controls, the hippocampus of diabetic rats displayed a reduced density of synaptic proteins syntaxin, synaptophysin and synaptosome-associated protein of 25 kDa (in average 18 +/- 1%, p < 0.05) as well increased glial fibrillary acidic protein (20 +/- 5%, p < 0.05), suggesting synaptic degeneration and astrogliosis, which were prevented by caffeine consumption. In conclusion, neurochemical alterations in the hippocampus of diabetic rats are not related to defects of glucose transport but likely reflect osmoregulatory adaptations caused by hyperglycemia. Furthermore, caffeine consumption affected this neurochemical adaptation to high glucose levels, which may contribute to its potential neuroprotective effects, namely preventing synaptic degeneration and astrogliosis.
Resumo:
The differential distribution and phosphorylation of tau proteins in cat cerebellum was studied with two well characterized antibodies, TAU-1 and TAU-2. TAU-1 detects tau proteins in axons, and the epitope in perikarya and dendrites is masked by phosphorylation. TAU-2 detects a phosphorylation-independent epitope on tau proteins. The molecular composition of tau proteins in the range of 45 kD to 64 kD at birth changed after the first postnatal month to a set of several adult variants of higher molecular weights in the range of 59 kD to 95 kD. The appearance of tau proteins in subsets of axons corresponds to the axonal maturation of cerebellar local-circuit neurons in granular and molecular layers and confirms previous studies. Tau proteins were also identified in synapses by immunofluorescent double-staining with synapsin I, located in the pinceau around the Purkinje cells, and in glomeruli. Dephosphorylation of juvenile cerebellar tissue by alkaline phosphatase indicated indirectly the presence of differentially phosphorylated tau forms mainly in juvenile ages. Additional TAU-1 immunoreactivity was unmasked in numerous perikarya and dendrites of stellate cells, and in cell bodies of granule cells. Purkinje cell bodies were stained transiently at juvenile ages. During postnatal development, the intensity of the phosphate-dependent staining decreased, suggesting that phosphorylation of tau proteins in perikarya and dendrites may be essential for early steps in neuronal morphogenesis during cat cerebellum development.