18 resultados para Surgical model
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: The objective of this experiment is to establish a continuous postmortem circulation in the vascular system of porcine lungs and to evaluate the pulmonary distribution of the perfusate. This research is performed in the bigger scope of a revascularization project of Thiel embalmed specimens. This technique enables teaching anatomy, practicing surgical procedures and doing research under lifelike circumstances. METHODS: After cannulation of the pulmonary trunk and the left atrium, the vascular system was flushed with paraffinum perliquidum (PP) through a heart-lung machine. A continuous circulation was then established using red PP, during which perfusion parameters were measured. The distribution of contrast-containing PP in the pulmonary circulation was visualized on computed tomography. Finally, the amount of leak from the vascular system was calculated. RESULTS: A reperfusion of the vascular system was initiated for 37 min. The flow rate ranged between 80 and 130 ml/min throughout the experiment with acceptable perfusion pressures (range: 37-78 mm Hg). Computed tomography imaging and 3D reconstruction revealed a diffuse vascular distribution of PP and a decreasing vascularization ratio in cranial direction. A self-limiting leak (i.e. 66.8% of the circulating volume) towards the tracheobronchial tree due to vessel rupture was also measured. CONCLUSIONS: PP enables circulation in an isolated porcine lung model with an acceptable pressure-flow relationship resulting in an excellent recruitment of the vascular system. Despite these promising results, rupture of vessel walls may cause leaks. Further exploration of the perfusion capacities of PP in other organs is necessary. Eventually, this could lead to the development of reperfused Thiel embalmed human bodies, which have several applications.
Resumo:
BACKGROUND: Colonic endoscopic submucosal dissection (ESD) is challenging as a result of the limited ability of conventional endoscopic instruments to achieve traction and exposure. The aim of this study was to evaluate the feasibility of colonic ESD in a porcine model using a novel endoscopic surgical platform, the Anubiscope (Karl Storz, Tüttlingen, Germany), equipped with two working channels for surgical instruments with four degrees of freedom offering surgical triangulation. METHODS: Nine ESDs were performed by a surgeon without any ESD experience in three swine, at 25, 15, and 10 cm above the anal verge with the Anubiscope. Sixteen ESDs were performed by an experienced endoscopist in five swine using conventional endoscopic instruments. Major ESD steps included the following for both groups: scoring the area, submucosal injection of glycerol, precut, and submucosal dissection. Outcomes measured were as follows: dissection time and speed, specimen size, en bloc dissection, and complications. RESULTS: No perforations occurred in the Anubis group, while there were eight perforations (50 %) in the conventional group (p = 0.02). Complete and en bloc dissections were achieved in all cases in the Anubis group. Mean dissection time for completed cases was statistically significantly shorter in the Anubis group (32.3 ± 16.1 vs. 55.87 ± 7.66 min; p = 0.0019). Mean specimen size was higher in the conventional group (1321 ± 230 vs. 927.77 ± 229.96 mm(2); p = 0.003), but mean dissection speed was similar (35.95 ± 18.93 vs. 23.98 ± 5.02 mm(2)/min in the Anubis and conventional groups, respectively; p = 0.1). CONCLUSIONS: Colonic ESDs were feasible in pig models with the Anubiscope. This surgical endoscopic platform is promising for endoluminal surgical procedures such as ESD, as it is user-friendly, effective, and safe.
Resumo:
Introduction. Selective embolization of the left-gastric artery (LGA) reduces levels of ghrelin and achieves significant short-term weight loss. However, embolization of the LGA would prevent the performance of bariatric procedures because the high-risk leakage area (gastroesophageal junction [GEJ]) would be devascularized. Aim. To assess an alternative vascular approach to the modulation of ghrelin levels and generate a blood flow manipulation, consequently increasing the vascular supply to the GEJ. Materials and methods. A total of 6 pigs underwent a laparoscopic clipping of the left gastroepiploic artery. Preoperative and postoperative CT angiographies were performed. Ghrelin levels were assessed perioperatively and then once per week for 3 weeks. Reactive oxygen species (ROS; expressed as ROS/mg of dry weight [DW]), mitochondria respiratory rate, and capillary lactates were assessed before and 1 hour after clipping (T0 and T1) and after 3 weeks of survival (T2), on seromuscular biopsies. A celiac trunk angiography was performed at 3 weeks. Results. Mean (±standard deviation) ghrelin levels were significantly reduced 1 hour after clipping (1902 ± 307.8 pg/mL vs 1084 ± 680.0; P = .04) and at 3 weeks (954.5 ± 473.2 pg/mL; P = .01). Mean ROS levels were statistically significantly decreased at the cardia at T2 when compared with T0 (0.018 ± 0.006 mg/DW vs 0.02957 ± 0.0096 mg/DW; P = .01) and T1 (0.0376 ± 0.008mg/DW; P = .007). Capillary lactates were significantly decreased after 3 weeks, and the mitochondria respiratory rate remained constant over time at the cardia and pylorus, showing significant regional differences. Conclusions. Manipulation of the gastric flow targeting the gastroepiploic arcade induces ghrelin reduction. An endovascular approach is currently under evaluation.
Resumo:
OBJECTIVES: Residual mitral regurgitation after valve repair worsens patients' clinical outcome. Postimplant adjustable mitral rings potentially address this issue, allowing the reshaping of the annulus on the beating heart under echocardiography control. We developed an original mitral ring allowing valve geometry remodelling after the implantation and designed an animal study to assess device effectiveness in correcting residual mitral regurgitation. METHODS: The device consists of two concentric rings: one internal and flexible, sutured to the mitral annulus and a second external and rigid. A third conic element slides between the two rings, modifying the shape of the flexible ring. This sliding element is remotely activated with a rotating tool. Animal model: in adult swine, under cardio pulmonary bypass and cardiac arrest, we shortened the primary chordae of P2 segment to reproduce Type III regurgitation and implanted the active ring. We used intracardiac ultrasound to assess mitral regurgitation and the efficacy of the active ring to correct it. RESULTS: Severe mitral regurgitation (3+ and 4+) was induced in eight animals, 54 ± 6 kg in weight. Vena contracta width decreased from 0.8 ± 0.2 to 0.1 cm; proximal isovelocity surface area radius decreased from 0.8 ± 0.2 to 0.1 cm and effective regurgitant orifice area decreased from 0.50 ± 0.1 to 0.1 ± 0.1 cm(2). Six animals had a reversal of systolic pulmonary flow that normalized following the activation of the device. All corrections were reversible. CONCLUSIONS: Postimplant adjustable mitral ring corrects severe mitral regurgitation through the reversible modification of the annulus geometry on the beating heart. It addresses the frequent and morbid issue of recurrent mitral valve regurgitation.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
OBJECTIVES: Comparison of doxorubicin uptake, leakage and spatial regional blood flow, and drug distribution was made for antegrade, retrograde, combined antegrade and retrograde isolated lung perfusion, and pulmonary artery infusion by endovascular inflow occlusion (blood flow occlusion), as opposed to intravenous administration in a porcine model. METHODS: White pigs underwent single-pass lung perfusion with doxorubicin (320 mug/mL), labeled 99mTc-microspheres, and Indian ink. Visual assessment of the ink distribution and perfusion scintigraphy of the perfused lung was performed. 99mTc activity and doxorubicin levels were measured by gamma counting and high-performance liquid chromatography on 15 tissue samples from each perfused lung at predetermined localizations. RESULTS: Overall doxorubicin uptake in the perfused lung was significantly higher (P = .001) and the plasma concentration was significantly lower (P < .0001) after all isolated lung perfusion techniques, compared with intravenous administration, without differences between them. Pulmonary artery infusion (blood flow occlusion) showed an equally high doxorubicin uptake in the perfused lung but a higher systemic leakage than surgical isolated lung perfusion (P < .0001). The geometric coefficients of variation of the doxorubicin lung tissue levels were 175%, 279%, 226%, and 151% for antegrade, retrograde, combined antegrade and retrograde isolated lung perfusion, and pulmonary artery infusion by endovascular inflow occlusion (blood flow occlusion), respectively, compared with 51% for intravenous administration (P = .09). 99mTc activity measurements of the samples paralleled the doxorubicin level measurements, indicating a trend to a more heterogeneous spatial regional blood flow and drug distribution after isolated lung perfusion and blood flow occlusion compared with intravenous administration. CONCLUSIONS: Cytostatic lung perfusion results in a high overall doxorubicin uptake, which is, however, heterogeneously distributed within the perfused lung.
Resumo:
The development of new medical devices, such as aortic valves, requires numerous preliminary studies on animals and training of personnel on cadavers before the devices can be used in patients. Postmortem circulation, a technique used for postmortem angiography, allows the vascular system to be reperfused in a way similar to that in living persons. This technique is used for postmortem investigations to visualize the human vascular system and to make vascular diagnoses. Specific material for reperfusing a human body was developed recently. Our aim was to investigate whether postmortem circulation that imitates in vivo conditions allows for the testing of medical materials on cadavers. We did this by delivering an aortic valve using minimally invasive methods. Postmortem circulation was established in eight corpses to recreate an environment as close as possible to in vivo conditions. Mobile fluoroscopy and a percutaneous catheterization technique were used to deliver the material to the correct place. Once the valve was implanted, the heart and primary vessels were extracted to confirm its position. Postmortem circulation proved to be essential in several of the cadavers because it helped the clinicians to deliver the material and improve their implantation techniques. Due to the intravascular circulation, sites with substantial arteriosclerotic stenosis could be bypassed, which would have been impossible without perfusion. Although originally developed for postmortem investigations, this reperfusion technique could be useful for testing new medical devices intended for living patients.
Resumo:
OBJECTIVE: An animal model has been developed to compare the effects of suture technique on the luminal dimensions and compliance of end-to-side vascular anastomoses. METHODS: Carotid and internal mammalian arteries (IMAs) were exposed in three pigs (90 kg). IMAs were sectioned distally to perform end-to-side anastomoses on carotid arteries. One anastomosis was performed with 7/0 polypropylene running suture. The other was performed with the automated suture delivery device (Perclose/Abbott Labs Inc.) that makes a 7/0 polypropylene interrupted suture. Four piezoelectric crystals were sutured on toe, heel and both lateral sides of each anastomosis to measure anastomotic axes. Anastomotic cross-sectional area (CSAA) was calculated with: CSAA = pi x mM/4 where m and M are the minor and major axes of the elliptical anastomosis. Cross-sectional anastomotic compliance (CSAC) was calculated as CSAC=Delta CSAA/Delta P where Delta P is the mean pulse pressure and Delta CSAA is the mean CSAA during cardiac cycle. RESULTS: We collected a total of 1200000 pressure-length data per animal. For running suture we had a mean systolic CSAA of 26.94+/-0.4 mm(2) and a mean CSAA in diastole of 26.30+/-0.5 mm(2) (mean Delta CSAA was 0.64 mm(2)). CSAC for running suture was 4.5 x 10(-6)m(2)/kPa. For interrupted suture we had a mean CSAA in systole of 21.98+/-0.2 mm(2) and a mean CSAA in diastole of 17.38+/-0.3 mm(2) (mean Delta CSAA was 4.6+/-0.1 mm(2)). CSAC for interrupted suture was 11 x 10(-6) m(2)/kPa. CONCLUSIONS: This model, even with some limitations, can be a reliable source of information improving the outcome of vascular anastomoses. The study demonstrates that suture technique has a substantial effect on cross-sectional anastomotic compliance of end-to-side anastomoses. Interrupted suture may maximise the anastomotic lumen and provides a considerably higher CSAC than continuous suture, that reduces flow turbulence, shear stress and intimal hyperplasia. The Heartflo anastomosis device is a reliable instrument that facilitates performance of interrupted suture anastomoses.
Resumo:
OBJECTIVES: The aim of our study was to evaluate the role of cell-membrane expressed TLRs and the signaling molecule MyD88 in a murine model of OA induced by knee menisectomy (surgical partial removal of the medial meniscus [MNX]). METHODS: OA was induced in 8-10weeks old C57Bl/6 wild-type (WT) female (n=7) mice and in knockout (KO) TLR-1 (n=7), -2 (n=8), -4 (n=9) -6 (n=5), MyD88 (n=8) mice by medial menisectomy, using the sham-operated contralateral knee as a control. Cartilage destruction and synovial inflammation were evaluated by knee joint histology using the OARSI scoring method. Apoptotic chondrocytes and cartilage metabolism (collagen II synthesis and MMP-mediated aggrecan degradation) were analyzed using immunohistochemistry. RESULTS: Operated knees exhibited OA features at 8weeks post-surgery compared to sham-operated ones. In menisectomized TLR-1, -2, -4, and -6 deficient mice, cartilage lesions, synovial inflammation and cartilage metabolism were similar to that in operated WT mice. Accordingly, using the same approach, we found no significant protection in MyD88-deficient mice in terms of OA progression as compared to WT littermates. CONCLUSIONS: Deficiency of TLRs or their signalling molecule MyD88 did not impact on the severity of experimental OA. Our results demonstrate that MyD88-dependent TLRs are not involved in this murine OA model. Moreover, the dispensable role of MyD88, which is also an adaptor for IL-1 receptor signaling, suggests that IL-1 is not a key mediator in the development of OA. This latter hypothesis is strengthened by the lack of efficiency of IL-1β antagonist in the treatment of OA.
Resumo:
We asked whether locally applied recombinant-Bone Morphogenic Protein-2 (rh-BMP-2) with an absorbable Type I collagen sponge (ACS) carrier could enhance the consolidation phase in a callotasis model. We performed unilateral transverse osteotomy of the tibia in 21 immature male rabbits. After a latency period of 7 days, a 3-weeks distraction was begun at a rate of 0.5mm/12h. At the end of the distraction period (Day 28) animals were randomly divided into three groups and underwent a second surgical procedure: 6 rabbits in Group I (Control group; the callus was exposed and nothing was added), 6 rabbits in Group II (ACS group; receiving the absorbable collagen sponge soaked with saline) and 9 rabbits in Group III (rh-BMP-2/ACS group; receiving the ACS soaked with 100μg/kg of rh-BMP-2, Inductos(®), Medtronic). Starting at Day 28 we assessed quantitative and qualitative radiographic parameters as well as densitometric parameters every two weeks (Days 28, 42, 56, 70 and 84). Animals were sacrificed after 8 weeks of consolidation (Day 84). Qualitative radiographic evaluation revealed hypertrophic calluses in the Group III animals. The rh-BMP-2/ACS also influenced the development of the cortex of the calluses as shown by the modified radiographic patterns in Group III when compared to Groups I and II. Densitometric analysis revealed the bone mineral content (BMC) was significantly higher in the rh-BMP-2/ACS treated animals (Group III).
Resumo:
OBJECTIVES: The reconstruction of the right ventricular outflow tract (RVOT) with valved conduits remains a challenge. The reoperation rate at 5 years can be as high as 25% and depends on age, type of conduit, conduit diameter and principal heart malformation. The aim of this study is to provide a bench model with computer fluid dynamics to analyse the haemodynamics of the RVOT, pulmonary artery, its bifurcation, and left and right pulmonary arteries that in the future may serve as a tool for analysis and prediction of outcome following RVOT reconstruction. METHODS: Pressure, flow and diameter at the RVOT, pulmonary artery, bifurcation of the pulmonary artery, and left and right pulmonary arteries were measured in five normal pigs with a mean weight of 24.6 ± 0.89 kg. Data obtained were used for a 3D computer fluid-dynamics simulation of flow conditions, focusing on the pressure, flow and shear stress profile of the pulmonary trunk to the level of the left and right pulmonary arteries. RESULTS: Three inlet steady flow profiles were obtained at 0.2, 0.29 and 0.36 m/s that correspond to the flow rates of 1.5, 2.0 and 2.5 l/min flow at the RVOT. The flow velocity profile was constant at the RVOT down to the bifurcation and decreased at the left and right pulmonary arteries. In all three inlet velocity profiles, low sheer stress and low-velocity areas were detected along the left wall of the pulmonary artery, at the pulmonary artery bifurcation and at the ostia of both pulmonary arteries. CONCLUSIONS: This computed fluid real-time model provides us with a realistic picture of fluid dynamics in the pulmonary tract area. Deep shear stress areas correspond to a turbulent flow profile that is a predictive factor for the development of vessel wall arteriosclerosis. We believe that this bench model may be a useful tool for further evaluation of RVOT pathology following surgical reconstructions.
Resumo:
BACKGROUND: The aim of our study was to assess the feasibility of minimally invasive digestive anastomosis using a modular flexible magnetic anastomotic device made up of a set of two flexible chains of magnetic elements. The assembly possesses a non-deployed linear configuration which allows it to be introduced through a dedicated small-sized applicator into the bowel where it takes the deployed form. A centering suture allows the mating between the two parts to be controlled in order to include the viscerotomy between the two magnetic rings and the connected viscera. METHODS AND PROCEDURES: Eight pigs were involved in a 2-week survival experimental study. In five colorectal anastomoses, the proximal device was inserted by a percutaneous endoscopic technique, and the colon was divided below the magnet. The distal magnet was delivered transanally to connect with the proximal magnet. In three jejunojejunostomies, the first magnetic chain was injected in its linear configuration through a small enterotomy. Once delivered, the device self-assembled into a ring shape. A second magnet was injected more distally through the same port. The centering sutures were tied together extracorporeally and, using a knot pusher, magnets were connected. Ex vivo strain testing to determine the compression force delivered by the magnetic device, burst pressure of the anastomosis, and histology were performed. RESULTS: Mean operative time including endoscopy was 69.2 ± 21.9 min, and average time to full patency was 5 days for colorectal anastomosis. Operative times for jejunojejunostomies were 125, 80, and 35 min, respectively. The postoperative period was uneventful. Burst pressure of all anastomoses was ≥ 110 mmHg. Mean strain force to detach the devices was 6.1 ± 0.98 and 12.88 ± 1.34 N in colorectal and jejunojejunal connections, respectively. Pathology showed a mild-to-moderate inflammation score. CONCLUSIONS: The modular magnetic system showed enormous potential to create minimally invasive digestive anastomoses, and may represent an alternative to stapled anastomoses, being easy to deliver, effective, and low cost.
Resumo:
AIMS: Retroviral-mediated gene therapy has been proposed as a primary or adjuvant treatment for advanced cancer, because retroviruses selectively infect dividing cells. Efficacy of retroviral-mediated gene transfer, however, is limited in vivo. Although packaging cell lines can produce viral vectors continuously, such allo- or xenogeneic cells are normally rejected when used in vivo. Encapsulation using microporous membranes can protect the packaging cells from rejection. In this study, we used an encapsulated murine packaging cell line to test the effects of in situ delivery of a retrovirus bearing the herpes simplex virus thymidine kinase suicide gene in a rat model of orthotopic glioblastoma. MATERIALS AND METHODS: To test gene transfer in vitro, encapsulated murine psi2-VIK packaging cells were co-cultured with baby hamster kidney (BHK) cells, and the percentage of transfected BHK cells was determined. For in vivo experiments, orthotopic C6 glioblastomas were established in Wistar rats. Capsules containing psi2-VIK cells were stereotaxically implanted into these tumours and the animals were treated with ganciclovir (GCV). Tumours were harvested 14 days after initiation of GCV therapy for morphometric analysis. RESULTS: Encapsulation of psi2-VIK cells increased transfection rates of BHK target cells significantly in vitro compared to psi2-VIK conditioned medium (3 x 10(6) vs 2.3 x 10(4) cells; P<0.001). In vivo treatment with encapsulated packaging cells resulted in 3% to 5% of C6 tumour cells transduced and 45% of tumour volume replaced by necrosis after GCV (P<0.01 compared to controls). CONCLUSION: In this experimental model of glioblastoma, encapsulation of a xenogeneic packaging cell line increased half-life and transduction efficacy of retrovirus-mediated gene transfer and caused significant tumour necrosis.
Resumo:
The spared nerve injury (SNI) model mimics human neuropathic pain related to peripheral nerve injury and is based upon an invasive but simple surgical procedure. Since its first description in 2000, it has displayed a remarkable development. It produces a robust, reliable and long-lasting neuropathic pain-like behaviour (allodynia and hyperalgesia) as well as the possibility of studying both injured and non-injured neuronal populations in the same spinal ganglion. Besides, variants of the SNI model have been developed in rats, mice and neonatal/young rodents, resulting in several possible angles of analysis. Therefore, the purpose of this chapter is to provide a detailed guidance regarding the SNI model and its variants, highlighting its surgical and behavioural testing specificities.
Resumo:
Cataract surgery is a common ocular surgical procedure consisting in the implantation of an artificial intraocular lens (IOL) to replace the ageing, dystrophic or damaged natural one. The management of postoperative ocular inflammation is a major challenge especially in the context of pre-existing uveitis. The association of the implanted IOL with a drug delivery system (DDS) allows the prolonged intraocular release of anti-inflammatory agents after surgery. Thus IOL-DDS represents an "all in one" strategy that simultaneously addresses both cataract and inflammation issues. Polymeric DDS loaded with two model anti-inflammatory drugs (triamcinolone acetonide (TA) and cyclosporine A (CsA)) were manufactured in a novel way and tested regarding their efficiency for the management of intraocular inflammation during the 3 months following surgery. The study involved an experimentally induced uveitis in rabbits. Experimental results showed that medicated DDS efficiently reduced ocular inflammation (decrease of protein concentration in aqueous humour, inflammatory cells in aqueous humour and clinical score). Additionally, more than 60% of the loading dose remained in the DDS at the end of the experiment, suggesting that the system could potentially cover longer inflammatory episodes. Thus, IOL-DDS were demonstrated to inhibit intraocular inflammation for at least 3 months after cataract surgery, representing a potential novel approach to cataract surgery in eyes with pre-existing uveitis.