6 resultados para Surfaces in the 3-dimensional Sphere

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Therapy of chronic hepatitis C (CHC) with pegIFNa/ribavirin achieves sustained virologic response (SVR) in ~55%. Pre-activation of the endogenous interferon system in the liver is associated non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. Methods: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. Results: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. Conclusions: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Textural division of a mineral in pyramids, with their apices located at the centre of the mineral and their bases corresponding to the mineral faces is called textural sector zoning. Textural sector zoning is observed in many metamorphic minerals like andalousite and garnet. Garnets found in the graphite rich black shales of the Mesozoic cover of the Gotthard Massif display textural sector zoning. The morphology of this sector zoning is not the same in different types of black shales observed in the Nufenen pass area. Garnets in foliated black shales display a well developed sector zoning while garnets found in cm-scale layered black shales display well developed sectors in the direction of the schistosity plane. This sector zoning is always associated with up to 30μm sized birefringent lamellae emanating radial from the sector boundaries. They alternate with isotrope lamellae. The garnet forming reaction was determined using singular value decomposition approach and results compared to thermodynamic calculations. It is of the form chl + mu + cc + cld = bt + fds + ank + gt + czo and is similar in both layered and foliated black shales. The calculated X(O) is close to 0.36 and does not significantly vary during the metamorphic history of the rock. This corresponds to X CO2, X CH4, and X H2O BSE imaging of garnets on oriented-cuts revealed that the orientation of the lamellae found within the sectors is controlled by crystallography. BSE imaging and electron microprobe analysis revealed that these lamellae are calcium rich compared to the isotropic lamellae. The addition of Ca to an almandine rich garnet causes a small distortion of the X site and potentially, ordering. Ordered and disordered garnet might have very similar free energies for this composition. Hence, two garnets with different composition can be precipitated with minor overstepping of the reaction. It is enough that continued nucleation of a new garnet layer slightly prefers the same structure to assure a fiber-like growth of both garnet compositions side by side. This hypothesis is in agreement with the thermodynamic properties of the garnet solid solution described in the literature and could explain the textures observed in garnets with these compositions. To understand the differences in sector zoning morphology, and crystal growth kinetics, crystal size distribution were determined in several samples using 2D spatial analysis of slab surfaces. The same nucleation rate law was chosen for all cases. Different growth rate law for non-layered black shales and layered black shales were used. Garnet in layered black shales grew according to a growth rate law of the form R=kt ½. The transport of nutrient is the limiting factor. Transport will occur preferentially on the schistosity planes. The shapes of the garnets in such rocks are therefore ovoid with the longest axis parallel to the schistosity planes. Sector zoning is less developed with sectors present only parallel to the schistosity planes. Garnet in non-layered blackshales grew according to a growth rate law of the form R=kt. The limiting factor is the attachment at the surface of the garnet. Garnets in these rocks will display a well developed sector zoning in all directions. The growth rate law is thus influenced by the texture of the rock. It favours or hinders the transport of nutrient to the mineral surface. Résumé : La zonation sectorielle texturale consiste en la division d'un cristal en pyramides dont les sommets sont localisés au centre du minéral. La base de ces pyramides correspond aux faces du minéral. Ce type de zonation est fréquemment observé dans les minéraux métamorphiques tels que l'andalousite ou le grenat. Les grenats présents dans les marnes riches en graphites de la couverture Mésozoïque du Massif du Gotthard présent une zonation sectorielle texturale. La morphologie de cette zonation n'est pas la même dans les marnes litées et dans les marnes foliées. Les grenats des marnes foliées montrent des secteurs bien développés dans 3 directions. Les grenats des marnes litées montrent des secteurs développés uniquement dans la direction des plans de schistosité. Cette zonation sectorielle est toujours associée à des lamelles biréfringentes de quelques microns de large qui partent de la limite des secteurs et qui sont perpendiculaires aux faces du grenat. Ces lamelles alternent avec des lamelles isotropes. La réaction de formation du grenat a été déterminée par calcul matriciel et thermodynamique. La réaction est de la forme chl + mu + cc + cld= bt + fds + ank + gt + czo. Elle est similaire dans les roches litées et dans les roches foliées. L'évaluation des conditions fluides montrent que le X(O) est proche de 0.36 et ne change pas de façon significative durant l'histoire métamorphique de la roche. Des images BSE sur des coupes orientées ont révélé que l'orientation de lamelles biréfringentes est contrôlée parla crystallographie. La comparaison des analyses à la microsonde électronique et des images BSE révèle également que les lamelles biréfringentes sont plus riches en calcium que les lamelles isotropes. L'addition de calcium va déformer légèrement le site X et ainsi créer un ordre sur ce site. L'énergie interne d'un grenat ordré et d'un grenat désordonné sont suffisamment proches pour qu'un léger dépassement de l'énergie de la réaction de formation permette la coexistence des 2 types de grenat dans le même minéral. La formation de lamelles est expliquée par le fait qu'un grenat préférera la même structure. Ces observations sont en accord avec la thermodynamique des solutions solides du grenat et permet d'expliquer les structures similaires observées dans des grenats provenant de lithologies différentes. Une étude de la distribution des tailles des grenats et une modélisation de la croissance a permis de mettre en évidence 2 mécanismes de croissance différents suivant la texture de la roche. Dans les 2 cas, la loi de nucléation est la même. Dans les roches litées, la loi de croissance est de forme R=kt½. Le transport des nutriments est le facteur limitant. Ce transport a lieu préférentiellement dans la direction des niveaux de schistosité. Les grenats ont une forme légèrement allongée car la croissance des secteurs est facilitée sur les niveaux de schistosité. La croissance des grenats dans les roches foliées suit une loi de croissance de la forme R=kt. Les seuls facteurs limitant la croissance sont les processus d'attachement à la surface du grenat. La loi de croissance de ces grenats est donc contrainte par la texture de la roche. Cela se marque par des différences dans la morphologie de la zonation sectorielle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).