11 resultados para Supernumerary embryos
em Université de Lausanne, Switzerland
Resumo:
Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.
Resumo:
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Resumo:
Current in vitro fertilisation (IVF) practice requires synchronisation between the¦environment of cultured oocytes and embryos and the surroundings to what they would have¦been exposed to in vivo. Commercial, sequential media follow this requirement but their exact¦composition is not available. We have compared two widely used IVF culture media systems using¦the two choriocarcinoma cell lines JEG-3 and BeWo. The two hormones hCG and progesterone¦were determined in the culture supernatants as endpoints. In both cell lines, but in a more¦pronounced way in JEG-3, progesterone rather than hCG production was stimulated, and a¦higher hormone release was observed in the fertilisation than in the cleavage media. Differences¦between manufacturers were small and did not favour one system over the other. We conclude¦that both sequential media systems can be equally well used in current IVF laboratory practice.¦© 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Oxygen uptake was studied during the establishment of cephalocaudal polarity in the very early chick embryo, i.e., 10 hr before (stage VI) and at laying (stage X). Oxygen fluxes in minute regions of the intact blastoderms were measured in vitro by scanning microspectrophotometry in the presence or absence of glucose. The oxygen consumption of the whole blastoderm remained constant (6 nmol O2 X hr-1) throughout the period studied, although the number of cells increased more than twofold. The regional oxygen fluxes varied from 0.41 to 1.13 nmol O2 X hr-1 X mm-2 at stage VI and from 0.42 to 0.70 nmol O2 X hr-1 X mm-2 at stage X. At stage VI, the oxygen flux in the center of the blastoderm was significantly higher than that in its periphery. This pattern remained evident when the values were corrected for cell number or for cytoplasmic volume. At stage X, there was a tendency for the oxygen fluxes to decrease from the posterior to the anterior regions of the area pellucida. Thus the pattern of oxidative metabolism in the late uterine embryos seems to change from radial to bilateral. This change of symmetry probably reflects the process of formation of the embryonic axis. In addition, the fact that the oxygen uptake was similar in the presence or absence of glucose suggests that early chick embryos metabolize essentially intracellular stores.
Resumo:
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.
Resumo:
There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
Adiponectin is an adipokine, present in the circulation in comparatively high concentrations and different molecular weight isoforms. For the first time, the distribution of these isoforms in serum and follicular fluid (FF) and their usefulness as biological markers for infertility investigations was studied. In vitro study. University based hospital. Fifty-four women undergoing intracytoplasmic sperm injection (ICSI). Oocytes were retrieved, fertilized in vitro using ICSI, and the resulting embryos transferred. Serum was collected immediately prior to oocyte retrieval. Adiponectin isoforms (high molecular weight (HMW), medium and low molecular weight) were determined in serum and FF. Total adiponectin and the different isoform levels were compared with leptin and ovarian steroid concentrations. Adiponectin isoforms in serum and FF. Adiponectin isoform distribution differed between serum and FF; the HMW fraction made up half of all adiponectin in the serum but only 23.3% in the FF. Total and HMW adiponectin in both serum and FF correlated negatively with the body mass index and the concentration of leptin. No correlations were observed for total adiponectin or its isoforms with estradiol, progesterone, anti-Mullerian hormone, inhibin B, or the total follicle stimulating hormone (FSH) dose administered during the ovarian stimulation phase. This study shows for the first time that adiponectin isoform distribution varies between the serum and FF compartments in gonadotropin stimulated patients. A trend towards higher HMW adiponectin serum levels in successful ICSI cycles compared to implantation failures was observed; studies with larger patient groups are required to confirm this observation.
Resumo:
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Resumo:
River-dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62-year-long (1948-2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30-40 years.
Resumo:
Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.