83 resultados para Structural modeling of digital informational environments
em Université de Lausanne, Switzerland
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
In 1903, the eastern slope of Turtle Mountain (Alberta) was affected by a 30 M m3-rockslide named Frank Slide that resulted in more than 70 casualties. Assuming that the main discontinuity sets, including bedding, control part of the slope morphology, the structural features of Turtle Mountain were investigated using a digital elevation model (DEM). Using new landscape analysis techniques, we have identified three main joint and fault sets. These results are in agreement with those sets identified through field observations. Landscape analysis techniques, using a DEM, confirm and refine the most recent geology model of the Frank Slide. The rockslide was initiated along bedding and a fault at the base of the slope and propagated up slope by a regressive process following a surface composed of pre-existing discontinuities. The DEM analysis also permits the identification of important geological structures along the 1903 slide scar. Based on the so called Sloping Local Base Level (SLBL) an estimation was made of the present unstable volumes in the main scar delimited by the cracks, and around the south area of the scar (South Peak). The SLBL is a method permitting a geometric interpretation of the failure surface based on a DEM. Finally we propose a failure mechanism permitting the progressive failure of the rock mass that considers gentle dipping wedges (30°). The prisms or wedges defined by two discontinuity sets permit the creation of a failure surface by progressive failure. Such structures are more commonly observed in recent rockslides. This method is efficient and is recommended as a preliminary analysis prior to field investigation.
Resumo:
Amino acids form the building blocks of all proteins. Naturally occurring amino acids are restricted to a few tens of sidechains, even when considering post-translational modifications and rare amino acids such as selenocysteine and pyrrolysine. However, the potential chemical diversity of amino acid sidechains is nearly infinite. Exploiting this diversity by using non-natural sidechains to expand the building blocks of proteins and peptides has recently found widespread applications in biochemistry, protein engineering and drug design. Despite these applications, there is currently no unified online bioinformatics resource for non-natural sidechains. With the SwissSidechain database (http://www.swisssidechain.ch), we offer a central and curated platform about non-natural sidechains for researchers in biochemistry, medicinal chemistry, protein engineering and molecular modeling. SwissSidechain provides biophysical, structural and molecular data for hundreds of commercially available non-natural amino acid sidechains, both in l- and d-configurations. The database can be easily browsed by sidechain names, families or physico-chemical properties. We also provide plugins to seamlessly insert non-natural sidechains into peptides and proteins using molecular visualization software, as well as topologies and parameters compatible with molecular mechanics software.
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
To study the interaction of the TCR with its ligand, the complex of a MHC molecule and an antigenic peptide, we modified a TCR contact residue of a H-2Kd-restricted antigenic peptide with photoreactive 4-azidobenzoic acid. The photoreactive group was a critical component of the epitope recognized by CTL clones derived from mice immunized with such a peptide derivative. The majority of these clones expressed V beta 1-encoded beta chains that were paired with J alpha TA28-encoded alpha chains. For one of these TCR, the photoaffinity labeled sites were mapped on the alpha chain as a J alpha TA28-encoded tryptophan and on the beta chain as a residue of the C' strand of V beta 1. Molecular modeling of this TCR suggested the presence of a hydrophobic pocket that harbors this tryptophan as well as a tyrosine on the C' strand of V beta 1 between which the photoreactive side chain inserts. It is concluded that this avid binding principle may account for the preferential selection of V beta 1 and J alpha TA28-encoded TCR.
Resumo:
This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.
Resumo:
The methodology for generating a homology model of the T1 TCR-PbCS-K(d) class I major histocompatibility complex (MHC) class I complex is presented. The resulting model provides a qualitative explanation of the effect of over 50 different mutations in the region of the complementarity determining region (CDR) loops of the T cell receptor (TCR), the peptide and the MHC's alpha(1)/alpha(2) helices. The peptide is modified by an azido benzoic acid photoreactive group, which is part of the epitope recognized by the TCR. The construction of the model makes use of closely related homologs (the A6 TCR-Tax-HLA A2 complex, the 2C TCR, the 14.3.d TCR Vbeta chain, the 1934.4 TCR Valpha chain, and the H-2 K(b)-ovalbumine peptide), ab initio sampling of CDR loops conformations and experimental data to select from the set of possibilities. The model shows a complex arrangement of the CDR3alpha, CDR1beta, CDR2beta and CDR3beta loops that leads to the highly specific recognition of the photoreactive group. The protocol can be applied systematically to a series of related sequences, permitting the analysis at the structural level of the large TCR repertoire specific for a given peptide-MHC complex.
Resumo:
Summary The specific CD8+ T cell immune response against tumors relies on the recognition by the T cell receptor (TCR) on cytotoxic T lymphocytes (CTL) of antigenic peptides bound to the class I major histocompatibility complex (MHC) molecule. Such tumor associated antigenic peptides are the focus of tumor immunotherapy with peptide vaccines. The strategy for obtaining an improved immune response often involves the design of modified tumor associated antigenic peptides. Such modifications aim at creating higher affinity and/or degradation resistant peptides and require precise structures of the peptide-MHC class I complex. In addition, the modified peptide must be cross-recognized by CTLs specific for the parental peptide, i.e. preserve the structure of the epitope. Detailed structural information on the modified peptide in complex with MHC is necessary for such predictions. In this thesis, the main focus is the development of theoretical in silico methods for prediction of both structure and cross-reactivity of peptide-MHC class I complexes. Applications of these methods in the context of immunotherapy are also presented. First, a theoretical method for structure prediction of peptide-MHC class I complexes is developed and validated. The approach is based on a molecular dynamics protocol to sample the conformational space of the peptide in its MHC environment. The sampled conformers are evaluated using conformational free energy calculations. The method, which is evaluated for its ability to reproduce 41 X-ray crystallographic structures of different peptide-MHC class I complexes, shows an overall prediction success of 83%. Importantly, in the clinically highly relevant subset of peptide-HLAA*0201 complexes, the prediction success is 100%. Based on these structure predictions, a theoretical approach for prediction of cross-reactivity is developed and validated. This method involves the generation of quantitative structure-activity relationships using three-dimensional molecular descriptors and a genetic neural network. The generated relationships are highly predictive as proved by high cross-validated correlation coefficients (0.78-0.79). Together, the here developed theoretical methods open the door for efficient rational design of improved peptides to be used in immunotherapy. Résumé La réponse immunitaire spécifique contre des tumeurs dépend de la reconnaissance par les récepteurs des cellules T CD8+ de peptides antigéniques présentés par les complexes majeurs d'histocompatibilité (CMH) de classe I. Ces peptides sont utilisés comme cible dans l'immunothérapie par vaccins peptidiques. Afin d'augmenter la réponse immunitaire, les peptides sont modifiés de façon à améliorer l'affinité et/ou la résistance à la dégradation. Ceci nécessite de connaître la structure tridimensionnelle des complexes peptide-CMH. De plus, les peptides modifiés doivent être reconnus par des cellules T spécifiques du peptide natif. La structure de l'épitope doit donc être préservée et des structures détaillées des complexes peptide-CMH sont nécessaires. Dans cette thèse, le thème central est le développement des méthodes computationnelles de prédiction des structures des complexes peptide-CMH classe I et de la reconnaissance croisée. Des applications de ces méthodes de prédiction à l'immunothérapie sont également présentées. Premièrement, une méthode théorique de prédiction des structures des complexes peptide-CMH classe I est développée et validée. Cette méthode est basée sur un échantillonnage de l'espace conformationnel du peptide dans le contexte du récepteur CMH classe I par dynamique moléculaire. Les conformations sont évaluées par leurs énergies libres conformationnelles. La méthode est validée par sa capacité à reproduire 41 structures des complexes peptide-CMH classe I obtenues par cristallographie aux rayons X. Le succès prédictif général est de 83%. Pour le sous-groupe HLA-A*0201 de complexes de grande importance pour l'immunothérapie, ce succès est de 100%. Deuxièmement, à partir de ces structures prédites in silico, une méthode théorique de prédiction de la reconnaissance croisée est développée et validée. Celle-ci consiste à générer des relations structure-activité quantitatives en utilisant des descripteurs moléculaires tridimensionnels et un réseau de neurones couplé à un algorithme génétique. Les relations générées montrent une capacité de prédiction remarquable avec des valeurs de coefficients de corrélation de validation croisée élevées (0.78-0.79). Les méthodes théoriques développées dans le cadre de cette thèse ouvrent la voie du design de vaccins peptidiques améliorés.
Resumo:
TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling.
Resumo:
Large slope failures in fractured rocks are often controlled by the combination of pre-existing tectonic fracturing and brittle failure propagation in the intact rock mass during the pre-failure phase. This study focuses on the influence of fold-related fractures and of post-folding fractures on slope instabilities with emphasis on Turtle Mountain, located in SW Alberta (Canada). The structural features of Turtle Mountain, especially to the south of the 1903 Frank Slide, were investigated using a high-resolution digital elevation model combined with a detailed field survey. These investigations allowed the identification of six main discontinuity sets influencing the slope instability and surface morphology. According to the different deformation phases affecting the area, the potential origin of the detected fractures was assessed. Three discontinuity sets are correlated with the folding phase and the others with post-folding movements. In order to characterize the rock mass quality in the different portions of the Turtle Mountain anticline, the geological strength index (GSI) has been estimated. The GSI results show a decrease in rock mass quality approaching the fold hinge area due to higher fracture persistence and higher weathering. These observations allow us to propose a model for the potential failure mechanisms related to fold structures.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.
Resumo:
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Immunotherapy of cancer is often performed with altered "analog" peptide Ags optimized for HLA class I binding, resulting in enhanced immunogenicity, but the induced T cell responses require further evaluation. Recently, we demonstrated fine specificity differences and enhanced recognition of naturally presented Ag by T cells after vaccination with natural Melan-A/MART-1 peptide, as compared with analog peptide. In this study, we compared the TCR primary structures of 1489 HLA-A*0201/Melan-A(26-35)-specific CD8 T cells derived from both cohorts of patients. Although a strong preference for TRAV12-2 segment usage was present in nearly all patients, usage of particular TRAJ gene segments and CDR3alpha composition differed slightly after vaccination with natural vs analog peptide. Moreover, TCR beta-chain repertoires were broader after natural than analog peptide vaccination. In all patients, we observed a marked conservation of the CDR3beta amino acid composition with recurrent sequences centered on a glycyl-leucyl/valyl/alanyl-glycyl motif. In contrast to viral-specific TCR repertoires, such "public" motifs were primarily expressed by nondominant T cell clonotypes, which contrasted with "private" CDR3beta signatures frequently found in T cell clonotypes that dominated repertoires of individual patients. Interestingly, no differences in functional avidity were observed between public and private T cell clonotypes. Collectively, our data indicate that T cell repertoires generated against natural or analog Melan-A peptide exhibited slightly distinct but otherwise overlapping and structurally conserved TCR features, suggesting that the differences in binding affinity/avidity of TCRs toward pMHC observed in the two cohorts of patients are caused by subtle structural TCR variations.
Resumo:
Surface- or biosynthetically labeled Lyt-2/3 antigens were isolated from cell lysates by immunoprecipitation and affinity chromatography with a monoclonal antibody. Tryptic digests of the individual subunits of 37,000, 32,000 and 28,000 apparent mol. wts were analysed by reverse-phase high-performance liquid chromatography and by two-dimensional peptide mapping. The results indicate that the 37,000 and 32,000 mol. wt components are structurally very similar whereas the 28,000 mol. wt component appears as a different molecule.