38 resultados para Stochastic demand
em Université de Lausanne, Switzerland
Resumo:
Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation (PS), it improves patient-ventilator synchrony and should allow a better expression of patient's intrinsic respiratory variability. We hypothesize that NAVA provides better matching in ventilator tidal volume (Vt) to patients inspiratory demand. 22 patients with acute respiratory failure, ventilated with PS were included in the study. A comparative study was carried out between PS and NAVA, with NAVA gain ensuring the same peak airway pressure as PS. Robust coefficients of variation (CVR) for Eadi and Vt were compared for each mode. The integral of Eadi (ʃEadi) was used to represent patient's inspiratory demand. To evaluate tidal volume and patient's demand matching, Range90 = 5-95 % range of the Vt/ʃEadi ratio was calculated, to normalize and compare differences in demand within and between patients and modes. In this study, peak Eadi and ʃEadi are correlated with median correlation of coefficients, R > 0.95. Median ʃEadi, Vt, neural inspiratory time (Ti_ ( Neural )), inspiratory time (Ti) and peak inspiratory pressure (PIP) were similar in PS and NAVA. However, it was found that individual patients have higher or smaller ʃEadi, Vt, Ti_ ( Neural ), Ti and PIP. CVR analysis showed greater Vt variability for NAVA (p < 0.005). Range90 was lower for NAVA than PS for 21 of 22 patients. NAVA provided better matching of Vt to ʃEadi for 21 of 22 patients, and provided greater variability Vt. These results were achieved regardless of differences in ventilatory demand (Eadi) between patients and modes.
Resumo:
The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.
Resumo:
BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.
Resumo:
The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.
Resumo:
Through this paper. we have attempted to model the demand for different classes of antibiotics used for respiratory infections in outpatient care in Switzerland using a spatial version of the linear approximate Almost Ideal Demand System (AIDS) model. This model takes spatial dependency into account by means of spatial lags of antibiotic budget shares. We control for the health status of patients and the potential harmful effects of antibiotic use in terms of bacterial resistance. Elasticities to socioeconomic determinants of consumption and own- and cross-price elasticities between different groups of antibiotic have also been computed in this paper. Significant cross-price elasticities are found between newer or more expensive generations and older or less expensive generations of antibiotics. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can result in a social dilemma when uncertainty about the behavior of partners creates multiple fitness peaks. Strategies that minimize risk ("risk dominant") instead of maximizing reward ("payoff dominant") are favored in economic models when individuals learn behaviors that increase their payoffs. Specifically, such strategies are shown to be "stochastically stable" (a refinement of evolutionary stability). Here, we extend the notion of stochastic stability to biological models of continuous phenotypes at a mutation-selection-drift balance. This allows us to make a unique prediction for long-term evolution in games with multiple equilibria. We show how genetic relatedness due to limited dispersal and scaled to account for local competition can crucially affect the stochastically-stable outcome of coordination games. We find that positive relatedness (weak local competition) increases the chance the payoff dominant strategy is stochastically stable, even when it is not risk dominant. Conversely, negative relatedness (strong local competition) increases the chance that strategies evolve that are neither payoff nor risk dominant. Extending our results to large multiplayer coordination games we find that negative relatedness can create competition so extreme that the game effectively changes to a hawk-dove game and a stochastically stable polymorphism between the alternative strategies evolves. These results demonstrate the usefulness of stochastic stability in characterizing long-term evolution of continuous phenotypes: the outcomes of multiplayer games can be reduced to the generic equilibria of two-player games and the effect of spatial structure can be analyzed readily.
Resumo:
A number of OECD countries aim to encourage work integration of disabled persons using quota policies. For instance, Austrian firms must provide at least one job to a disabled worker per 25 nondisabled workers and are subject to a tax if they do not. This "threshold design" provides causal estimates of the noncompliance tax on disabled employment if firms do not manipulate nondisabled employment; a lower and upper bound on the causal effect can be constructed if they do. Results indicate that firms with 25 nondisabled workers employ about 0.04 (or 12%) more disabled workers than without the tax; firms do manipulate employment of nondisabled workers but the lower bound on the employment effect of the quota remains positive; employment effects are stronger in low-wage firms than in high-wage firms; and firms subject to the quota of two disabled workers or more hire 0.08 more disabled workers per additional quota job. Moreover, increasing the noncompliance tax increases excess disabled employment, whereas paying a bonus to overcomplying firms slightly dampens the employment effects of the tax.
Resumo:
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.