8 resultados para Steroids--Analysis.
em Université de Lausanne, Switzerland
Resumo:
Tribulus terrestris is a nutritional supplement highly debated regarding its physiological and actual effects on the organism. The main claimed effect is an increase of testosterone anabolic and androgenic action through the activation of endogenous testosterone production. Even if this biological pathway is not entirely proven, T. terrestris is regularly used by athletes. Recently, the analysis of two female urine samples by GC/C/IRMS (gas chromatography/combustion/isotope-ratio-mass-spectrometry) conclusively revealed the administration of exogenous testosterone or its precursors, even if the testosterone glucuronide/epitestosterone glucuronide (T/E) ratio and steroid marker concentrations were below the cut-off values defined by World Anti-Doping Agency (WADA). To argue against this adverse analytical finding, the athletes recognized having used T. terrestris in their diet. In order to test this hypothesis, two female volunteers ingested 500 mg of T. terrestris, three times a day and for two consecutive days. All spot urines were collected during 48 h after the first intake. The (13)C/(12)C ratio of ketosteroids was determined by GC/C/IRMS, the T/E ratio and DHEA concentrations were measured by GC/MS and LH concentrations by radioimmunoassay. None of these parameters revealed a significant variation or increased above the WADA cut-off limits. Hence, the short-term treatment with T. terrestris showed no impact on the endogenous testosterone metabolism of the two subjects.
Resumo:
The hydrogen isotope ratio (HIR) of body water and, therefore, of all endogenously synthesized compounds in humans, is mainly affected by the HIR of ingested drinking water. As a consequence, the entire organism and all of its synthesized substrates will reflect alterations in the isotope ratio of drinking water, which depends on the duration of exposure. To investigate the effect of this change on endogenous urinary steroids relevant to doping-control analysis the hydrogen isotope composition of potable water was suddenly enriched from -50 to 200 0/00 and maintained at this level for two weeks for two individuals. The steroids under investigation were 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 5α-androstane-3α,17β-diol, and 5β-androstane-3α,17β-diol (excreted as glucuronides) and ETIO, ANDRO and 3β-hydroxyandrost-5-en-17-one (excreted as sulfates). The HIR of body water was estimated by determination of the HIR of total native urine, to trace the induced changes. The hydrogen in steroids is partly derived from the total amount of body water and cholesterol-enrichment could be calculated by use of these data. Although the sum of changes in the isotopic composition of body water was 150 0/00, shifts of approximately 30 0/00 were observed for urinary steroids. Parallel enrichment in their HIR was observed for most of the steroids, and none of the differences between the HIR of individual steroids was elevated beyond recently established thresholds. This finding is important to sports drug testing because it supports the intended use of this novel and complementary methodology even in cases where athletes have drunk water of different HIR, a plausible and, presumably, inevitable scenario while traveling.
Resumo:
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.
Resumo:
Several factors influencing the carbon isotope ratios (CIR) of endogenous urinary steroids have been identified in recent years. One of these should be the metabolism of steroids inside the body involving numerous different enzymes. A detailed look at this metabolism taking into account differences found between steroids excreted as glucuronides or as sulphates and hydrogen isotope ratios of different steroids pointed out possibility of unequal CIR at the main production sites inside the male body - the testes and the adrenal glands. By administration of β-HCG it is possible to strongly stimulate the steroid production within the testes without influencing the production at the adrenal glands. Therefore, this treatment should result in changed CIR of urinary androgens in contrast to the undisturbed pre-treatment values. Four male volunteers received three injections of β-HCG over a time course of 5 days and collected their urine samples at defined intervals after the last administration. Those samples showing the largest response in contrast to the pre-administration urines were identified by steroid profile measurements and subsequent analysed by GC/C/IRMS. CIR of androsterone, etiocholanolone, testosterone, 5α- and 5β-androstanediol and pregnanediol were compared. While pregnanediol was not influenced, most of the investigated androgens showed depleted values after treatment. The majority of differences were found to be statistically significant and nearly all showed the expected trend towards more depleted δ(13)C-values. These results support the hypothesis of different CIR at different production sites inside the human body. The impact of these findings on doping control analysis will be discussed.
Resumo:
The urinary steroid profile is constituted by anabolic androgenic steroids, including testosterone and its relatives, that are extensively metabolized into phase II sulfated or glucuronidated steroids. The use of liquid chromatography coupled to mass spectrometry (LC-MS) is an issue for the direct analysis of conjugated steroids, which can be used as urinary markers of exogenous steroid administration in doping analysis, without hydrolysis of the conjugated moiety. In this study, a sensitive and selective ultra high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) method was developed to quantify major urinary metabolites simultaneously after testosterone intake. The sample preparation of the urine (1 mL) was performed by solid-phase extraction on Oasis HLB sorbent using a 96-well plate format. The conjugated steroids were analyzed by UHPLC-QTOF-MS(E) with a single-gradient elution of 36 min (including re-equilibration time) in the negative electrospray ionization mode. MS(E) analysis involved parallel alternating acquisitions of both low- and high-collision energy functions. The method was validated and applied to samples collected from a clinical study performed with a group of healthy human volunteers who had taken testosterone, which were compared with samples from a placebo group. Quantitative results were also compared to GC-MS and LC-MS/MS measurements, and the correlations between data were found appropriate. The acquisition of full mass spectra over the entire mass range with QTOF mass analyzers gives promise of the opportunity to extend the steroid profile to a higher number of conjugated steroids.
Resumo:
Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern sports drug testing procedures.
Resumo:
BACKGROUND: Prognostic models have been developed to predict survival of patients with newly diagnosed glioblastoma (GBM). To improve predictions, models should be updated with information at the recurrence. We performed a pooled analysis of European Organization for Research and Treatment of Cancer (EORTC) trials on recurrent glioblastoma to validate existing clinical prognostic factors, identify new markers, and derive new predictions for overall survival (OS) and progression free survival (PFS).¦METHODS: Data from 300 patients with recurrent GBM recruited in eight phase I or II trials conducted by the EORTC Brain Tumour Group were used to evaluate patient's age, sex, World Health Organisation (WHO) performance status (PS), presence of neurological deficits, disease history, use of steroids or anti-epileptics and disease characteristics to predict PFS and OS. Prognostic calculators were developed in patients initially treated by chemoradiation with temozolomide.¦RESULTS: Poor PS and more than one target lesion had a significant negative prognostic impact for both PFS and OS. Patients with large tumours measured by the maximum diameter of the largest lesion (⩾42mm) and treated with steroids at baseline had shorter OS. Tumours with predominant frontal location had better survival. Age and sex did not show independent prognostic values for PFS or OS.¦CONCLUSIONS: This analysis confirms performance status but not age as a major prognostic factor for PFS and OS in recurrent GBM. Patients with multiple and large lesions have an increased risk of death. With these data prognostic calculators with confidence intervals for both medians and fixed time probabilities of survival were derived.
Resumo:
The detection of testosterone abuse in sports is routinely achieved through the 'steroidal module' of the Athlete Biological Passport by GC-MS(/MS) quantification of selected endogenous anabolic androgenic steroids (EAAS) from athletes' urines. To overcome some limitations of the "urinary steroid profile" such as the presence of confounding factors (ethnicity, enzyme polymorphism, bacterial contamination, and ethanol), ultrahigh performance liquid chromatography (UHPLC) measurements of blood concentrations of testosterone, its major metabolites, and precursors could represent an interesting and complementary strategy. In this work, two UHPLC-MS/MS methods were developed for the quantification of testosterone and related compounds in human serum, including major progestogens, corticoids, and estrogens. The validated methods were then used for the analyses of serum samples collected from 19 healthy male volunteers after oral and transdermal testosterone administration. Results from unsupervised multiway analysis allowed variations of target analytes to be assessed simultaneously over a 96-h time period. Except for alteration of concentration values due to the circadian rhythm, which concerns mainly corticosteroids, DHEA, and progesterone, significant variations linked to the oral and transdermal testosterone administration were observed for testosterone, DHT, and androstenedione. As a second step of analysis, the longitudinal monitoring of these biomarkers using intra-individual thresholds showed, in comparison to urine, significant improvements in the detection of testosterone administration, especially for volunteers with del/del genotype for phase II UGT2B17 enzyme, not sensitive to the main urinary marker, T/E ratio. A substantial extension of the detection window after transdermal testosterone administration was also observed in serum matrix. The longitudinal follow-up proposed in this study represents a first example of 'blood steroid profile' in doping control analysis, which can be proposed in the future as a complement to the 'urinary module' for improving steroid abuse detection capabilities.