167 resultados para Spiral Ganglion
em Université de Lausanne, Switzerland
Resumo:
TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.
Resumo:
Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
Resumo:
Aminoglycoside antibiotics are ototoxic, inducing irreversible sensorineural hearing loss mediated by oxidative and excitotoxic stresses. The NF-kappaB pathway is involved in the response to aminoglycoside damage in the cochlea. However, the molecular mechanisms of this ototoxicity remain unclear. We investigated the expression of PKCzeta, a key regulator of NF-kappaB activation, in response to aminoglycoside treatment. Amikacin induced PKCzeta cleavage and nuclear translocation. These events were concomitant with chromatin condensation and paralleled the decrease in NF-kappaB (p65) levels in the nucleus. Amikacin also induced the nuclear translocation of apoptotic inducing factor (AIF). Prior treatment with aspirin prevented PKCzeta cleavage and nuclear translocation. Thus, aspirin counteracts the early effects of amikacin, thereby protecting hair cells and spiral ganglion neurons. These results demonstrate that PKCzeta acts as sentinel connecting specific survival pathways to mediate cellular responses to amikacin ototoxicity.
Resumo:
Bilioma is a rare complication of traumatic liver injury, and the precise site of bile leak is often difficult to demonstrate with a non-invasive technique. We report a case of post-traumatic bile leak in a 15-year-old girl in whom spiral CT after intravenous cholangiography allowed excellent preoperative demonstration of the extent of the liver rupture and an exact location of the bile leak. We think that spiral-CT cholangiography could be an accurate, non-invasive technique to investigate the biliary system in cases of paediatric liver trauma.
Resumo:
Background: Thin melanomas (Breslow thickness <= 1 mm) are considered highly curable. The aim of this study was to evaluate the correlation between histological tumour regression and sentinel lymph node (SLN) involvement in thin melanomas. Patients and methods: This was a retrospective single-centre study of 34 patients with thin melanomas undergoing SLN biopsy between April 1998 and January 2005. Results: The study included 14 women and 20 men of mean age 56.3 years. Melanomas were located on the neck (n = 3), soles (n = 4), trunk (n = 13) and extremities (n = 14). Pathological examination showed 25 SSM, four acral lentiginous melanomas, three in situ melanomas, one nodular melanoma and one unclassified melanoma with a mean Breslow thickness of 0.57 mm. Histological tumour regression was observed in 26 over 34 cases and ulceration was found in one case. Clark levels were as follows: I (n = 3), II (n = 20), III (n = 9), IV (n = 2). Growth phase was available in 15 cases (seven radial and eight vertical). Mitotic rates, available in 24 cases, were: 0 (n = 9), 1 (n = 11), 2 (n = 2), 3 (n = 1), 6 (n = 1). One patient with histological tumour regression (2.9% of cases and 3.8% of cases with regressing tumours) had a metastatic SLN. One patient negative for SLN had a lung relapse and died of the disease. Mean follow-up was 26.2 months. Conclusion: The results of the present study and the analysis of the literature show that histological regression of the primary tumour does not seem predictive of higher risk of SLN involvement in thin melanomas. This suggests that screening for SLN is not indicated in thin melanomas, even those with histological regression.
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.
Resumo:
RATIONALE AND OBJECTIVES: Recent developments of magnetic resonance imaging enabled free-breathing coronary MRA (cMRA) using steady-state-free-precession (SSFP) for endogenous contrast. The purpose of this study was a systematic comparison of SSFP cMRA with standard T2-prepared gradient-echo and spiral cMRA. METHODS: Navigator-gated free-breathing T2-prepared SSFP-, T2-prepared gradient-echo- and T2-prepared spiral cMRA was performed in 18 healthy swine (45-68 kg body-weight). Image quality was investigated subjectively and signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness were compared. RESULTS: SSFP cMRA allowed for high quality cMRA during free breathing with substantial improvements in SNR, CNR and vessel sharpness when compared with standard T2-prepared gradient-echo imaging. Spiral imaging demonstrated the highest SNR while image quality score and vessel definition was best for SSFP imaging. CONCLUSION: Navigator-gated free-breathing T2-prepared SSFP cMRA is a promising new imaging approach for high signal and high contrast imaging of the coronary arteries with improved vessel border definition.
Resumo:
BACKGROUND: The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. METHODS: Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0-10 s after light termination) and late (10-30 s after light termination). Lens transmission was measured with an ocular fluorometer. RESULTS: The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p=0.02, p=0.0014, respectively) for the blue light stimulus condition only.The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions.Lens transmission decreased linearly with age (p<0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p=0.02). CONCLUSIONS: Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age.
Resumo:
The recent discovery of melanopsin-expressing retinal ganglion cells that mediate the pupil light reflex has provided new insights into how the pupil responds to different properties of light. These ganglion cells are unique in their ability to transduce light into electrical energy. There are parallels between the electrophysiologic behavior of these cells in primates and the clinical pupil response to chromatic stimuli. Under photopic conditions, a red light stimulus produces a pupil constriction mediated predominantly by cone input via trans-synaptic activation of melanopsin-expressing retinal ganglion cells, whereas a blue light stimulus at high intensity produces a steady-state pupil constriction mediated primarily by direct intrinsic photoactivation of the melanopsin-expressing ganglion cells. Preliminary data in humans suggest that under photopic conditions, cones primarily drive the transient phase of the pupil light reflex, whereas intrinsic activation of the melanopsin-expressing ganglion cells contributes heavily to sustained pupil constriction. The use of chromatic light stimuli to elicit transient and sustained pupil light reflexes may become a clinical pupil test that allows differentiation between disorders affecting photoreceptors and those affecting retinal ganglion cells.
Resumo:
Our objective was a prospective comparison of MR enteroclysis (MRE) with multidetector spiral-CT enteroclysis (MSCTE). Fifty patients with various suspected small bowel diseases were investigated by MSCTE and MRE. The MSCTE was performed using slices of 2.5 mm, immediately followed by MRE, obtaining T1- and T2-weighted sequences, including gadolinium-enhanced acquisition with fat saturation. Three radiologists independently evaluated MSCTE and MRE searching for 12 pathological signs. Interobserver agreement was calculated. Sensitivities and specificities resulted from comparison with pathological results ( n=29) and patient's clinical evolution ( n=21). Most pathological signs, such as bowel wall thickening (BWT), bowel wall enhancement (BWE) and lymphadenopathy (ADP), showed better interobserver agreement on MSCTE than on MRE (BWT: 0.65 vs 0.48; BWE: 0.51 vs 0.37; ADP: 0.52 vs 0.15). Sensitivity of MSCTE was higher than that of MRE in detecting BWT (88.9 vs 60%), BWE (78.6 vs 55.5%) and ADP (63.8 vs 14.3%). Wilcoxon signed-rank test revealed significantly better sensitivity of MSCTE than that of MRE for each observer ( p=0.028, p=0.046, p=0.028, respectively). Taking the given study design into account, MSCTE provides better sensitivity in detecting lesions of the small bowel than MRE, with higher interobserver agreement.
Resumo:
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.