11 resultados para Sperm subpopulations
em Université de Lausanne, Switzerland
Resumo:
One debated issues in evolutionary biology is, why in many species females mate with multiple males. Several hypotheses have been put forward, yet the benefits of multiple mating (here defined as mating with several males) remain unclear in many cases. The sperm sexual selection (SSS) hypothesis has been developed to account for the widespread occurrence of multiple mating in females. It argues that multiple mating by females may rapidly spread, when initially a small fraction of the females mate multiply, and if there is a heritable difference among males in one or several of the four characteristics: (1) the quantity of sperm they produce; (2) the success of their sperm in reaching and fertilizing an egg; (3) their ability to displace the sperm that females stored during previous mating; and (4) their ability to prevent any other male from subsequently introducing sperm (e.g., differential efficiency of mating plugs).
Resumo:
Intraspecific variation in social organization is common, yet the underlying causes are rarely known. An exception is the fire ant Solenopsis invicta in which the existence of two distinct forms of social colony organization is under the control of the two variants of a pair of social chromosomes, SB and Sb. Colonies containing exclusively SB/SB workers accept only one single queen and she must be SB/SB. By contrast, when colonies contain more than 10% of SB/Sb workers, they accept several queens but only SB/Sb queens. The variants of the social chromosome are associated with several additional important phenotypic differences, including the size, fecundity and dispersal strategies of queens, aggressiveness of workers, and sperm count in males. However, little is known about whether social chromosome variants affect fitness in other life stages. Here, we perform experiments to determine whether differential selection occurs during development and in adult workers. We find evidence that the Sb variant of the social chromosome increases the likelihood of female brood to develop into queens and that adult SB/Sb workers, the workers that cull SB/SB queens, are overrepresented in comparison to SB/SB workers. This demonstrates that supergenes such as the social chromosome can have complex effects on phenotypes at various stages of development.
Resumo:
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Resumo:
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease with an incidence estimated between 1:2,000 and 1:40,000. Ciliated epithelia line the airways, nasal and sinus cavities, Eustachian tube and fallopian tubes. Congenital abnormalities of ciliary structure and function impair mucociliary clearance. As a consequence, patients present with chronic sinopulmonary infections, recurrent glue ear and female subfertility. Similarities in the ultrastructure of respiratory cilia, nodal cilia and sperm result in patients with PCD also presenting with male infertility, abnormalities of left-right asymmetry (most commonly situs inversus totalis) and congenital heart disease. Early diagnosis is essential to ensure specialist management of the respiratory and otological complications of PCD. Diagnostic tests focus on analysis of ciliary function and electron microscopy structure. Analysis is technically difficult and labour intensive. It requires expertise for interpretation, restricting diagnosis to specialist centres. Management is currently based on the consensus of experts, and there is a pressing need for randomised clinical trials to inform treatment.
Resumo:
Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically "profile" the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Adiponectin is an adipokine, present in the circulation in comparatively high concentrations and different molecular weight isoforms. For the first time, the distribution of these isoforms in serum and follicular fluid (FF) and their usefulness as biological markers for infertility investigations was studied. In vitro study. University based hospital. Fifty-four women undergoing intracytoplasmic sperm injection (ICSI). Oocytes were retrieved, fertilized in vitro using ICSI, and the resulting embryos transferred. Serum was collected immediately prior to oocyte retrieval. Adiponectin isoforms (high molecular weight (HMW), medium and low molecular weight) were determined in serum and FF. Total adiponectin and the different isoform levels were compared with leptin and ovarian steroid concentrations. Adiponectin isoforms in serum and FF. Adiponectin isoform distribution differed between serum and FF; the HMW fraction made up half of all adiponectin in the serum but only 23.3% in the FF. Total and HMW adiponectin in both serum and FF correlated negatively with the body mass index and the concentration of leptin. No correlations were observed for total adiponectin or its isoforms with estradiol, progesterone, anti-Mullerian hormone, inhibin B, or the total follicle stimulating hormone (FSH) dose administered during the ovarian stimulation phase. This study shows for the first time that adiponectin isoform distribution varies between the serum and FF compartments in gonadotropin stimulated patients. A trend towards higher HMW adiponectin serum levels in successful ICSI cycles compared to implantation failures was observed; studies with larger patient groups are required to confirm this observation.
Resumo:
Male dominance hierarchies are usually linked to relative body size and to weapon size, that is, to determinants of fighting ability. Secondary sexual characters that are not directly used as weapons could still be linked to dominance if they reveal determination or overall health and vigour and hence, indirectly, fighting ability. We studied the mating behaviour of the minnow, Phoxinus phoxinus, a cyprinid fish in which males develop breeding tubercles during the spawning season. The function of these breeding tubercles is still not clear. Using microsatellite markers, we determined male reproductive success under controlled conditions. The minnows were territorial and quickly established a dominance hierarchy at the beginning of the spawning season. Dominance was strongly and positively linked to fertilization success. Although body size and number of breeding tubercles were not significantly correlated in our sample, both large males and males with many breeding tubercles were more dominant and achieved higher fertilization success than small males or males with few tubercles. We found multimale fertilization in most clutches, suggesting that sperm competition is important in this species. Females showed behaviour that may be linked to spawning decision, that is, male dominance might not be the only determinant of male reproductive success in minnows
Resumo:
The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.