9 resultados para Soldadura TIG
em Université de Lausanne, Switzerland
Resumo:
Homologous genes are classified into orthologs and paralogs, depending on whether they arose by speciation or duplication. It is widely assumed that orthologs share similar functions, whereas paralogs are expected to diverge more from each other. But does this assumption hold up on further examination? We present evidence that orthologs and paralogs are not so different in either their evolutionary rates or their mechanisms of divergence. We emphasize the importance of appropriately designed studies to test models of gene evolution between orthologs and between paralogs. Thus, functional change between orthologs might be as common as between paralogs, and future studies should be designed to test the impact of duplication against this alternative model.
Resumo:
Recent studies have revealed that our sex chromosomes differentiated relatively recently from ancestral autosomes in the common ancestor of placental and marsupial mammals (therians). Here, we show that the therian X started to accumulate new retroduplicate genes with overall sex-biased expression upon therian sex chromosome differentiation. This process reached its peak within the first approximately 90 million years of sex chromosome evolution and then leveled off. Taken together, our observations suggest that the major sex-related functional remodeling of the X was completed relatively soon after the origination of therian sex chromosomes.
Resumo:
DNA must constantly be repaired to maintain genome stability. Although it is clear that DNA repair reactions depend on cell type and developmental stage, we know surprisingly little about the mechanisms that underlie this tissue specificity. This is due, in part, to the lack of adequate study systems. This review discusses recent progress toward understanding the mechanism leading to varying rates of instability at expanded trinucleotide repeats (TNRs) in different tissues. Although they are not DNA lesions, TNRs are hotspots for genome instability because normal DNA repair activities cause changes in repeat length. The rates of expansions and contractions are readily detectable and depend on cell identity, making TNR instability a particularly convenient model system. A better understanding of this type of genome instability will provide a foundation for studying tissue-specific DNA repair more generally, which has implications in cancer and other diseases caused by mutations in the caretakers of the genome.
Resumo:
Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general.
Resumo:
Although homology is a fundamental concept in biology and is one of the shared channels of communication universal to all biology, it is difficult to find a consensus definition. Indeed, the interpretations of homology have changed as biology has progressed. New terms, such as paramorphism, have been introduced into the literature with mixed success. In addition, different research fields operate with different definitions of homology, for example the mechanistic usage of evo-devo is not strictly historical and would not be acceptable in cladistics. This makes a global understanding of homology complex, whereas the integration of evolutionary concepts into bioinformatics and genomics is increasingly important. We propose an ontology organizing homology and related concepts and hope this solution will also facilitate the integration and sharing of knowledge among the community.
Resumo:
The detection of odour stimuli in the environment is universally important for primal behaviours such as feeding, mating, kin interactions and escape responses. Given the ubiquity of many airborne chemical signals and the similar organisation of animal olfactory circuits, a fundamental question in our understanding of the sense of smell is how species-specific behavioural responses to odorants can evolve. Recent comparative genomic, developmental and physiological studies are shedding light on this problem by providing insights into the genetic mechanisms that underlie anatomical and functional evolution of the olfactory system. Here we synthesise these data, with a particular focus on insect olfaction, to address how new olfactory receptors and circuits might arise and diverge, offering glimpses into how odour-evoked behaviours could adapt to an ever-changing chemosensory world.
Resumo:
Global human genetic variation is greatly influenced by geography, with genetic differentiation between populations increasing with geographic distance and within-population diversity decreasing with distance from Africa. In fact, these 'clines' can explain most of the variation in human populations. Despite this, population genetics inferences often rely on models that do not take geography into account, which could result in misleading conclusions when working at global geographic scales. Geographically explicit approaches have great potential for the study of human population genetics. Here, we discuss the most promising avenues of research in the context of human settlement history and the detection of genomic elements under natural selection. We also review recent technical advances and address the challenges of integrating geography and genetics.