32 resultados para Soil C

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuum of carbon, from atmospheric CO2 to secondary calcium carbonate, has been studied in a soil associ- ated with scree slope deposits in the Jura Mountains of Switzerland. This approach is based on former studies conducted in other environments. This C continuum includes atmospheric CO2, soil organic matter (SOM), soil CO2, dissolved inorganic carbon (DIC) in soil solutions, and secondary pedogenic carbonate. Soil parameters (pCO2, temperature, pH, Cmin and Corg contents), soil solution chemistry, and isotopic compositions of soil CO2, DIC, carbonate and soil organic matter (δ13CCO2, δ13CDIC, δ13Ccar and δ13CSOM values) have been monitored at different depths (from 20 to 140 cm) over one year. Results demonstrated that the carbon source in secondary carbonate (mainly needle fiber calcite) is related to the dissolved inorganic carbon, which is strongly dependent on soil respiration. The heterotrophic respiration, rather than the limestone parent material, seems to control the pedogenic carbon cycle. The correlation of δ13Corg values with Rock-Eval HI and OI indices demonstrates that, in a soil associated to scree slope deposits, the main process responsible for 13C-enrichment in SOM is related to bac- terial oxidative decarboxylation. Finally, precipitation of secondary calcium carbonate is enhanced by changes in soil pCO2 associated to the convective movement of air masses induced by temperature gradients (heat pump effect) in the highly porous scree slope deposits. The exportation of soil C-leachates from systems such as the one studied in this paper could partially explain the "gap in the European carbon budget" reported by recent studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Gram-negative, rod-shaped, aerobic bacterium, designated strain RP007(T), was isolated from a polycyclic aromatic hydrocarbon-contaminated soil in New Zealand. Two additional strains were recovered from a compost heap in Belgium (LMG 18808) and from the rhizosphere of maize in the Netherlands (LMG 24204). The three strains had virtually identical 16S rRNA gene sequences and whole-cell protein profiles, and they were identified as members of the genus Burkholderia, with Burkholderia phenazinium as their closest relative. Strain RP007(T) had a DNA G+C content of 63.5 mol% and could be distinguished from B. phenazinium based on a range of biochemical characteristics. Strain RP007(T) showed levels of DNA-DNA relatedness towards the type strain of B. phenazinium and those of other recognized Burkholderia species of less than 30 %. The results of 16S rRNA gene sequence analysis, DNA-DNA hybridization experiments and physiological and biochemical tests allowed the differentiation of strain RP007(T) from all recognized species of the genus Burkholderia. Strains RP007(T), LMG 18808 and LMG 24204 are therefore considered to represent a single novel species of the genus Burkholderia, for which the name Burkholderia sartisoli sp. nov. is proposed. The type strain is RP007(T) (=LMG 24000(T) =CCUG 53604(T) =ICMP 13529(T)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxalate-carbonate pathway (OCP) is a biogeochemical process, which has been described in Milicia excelsa tree ecosystems of Africa. This pathway involves biological and geological parameters at different scales: oxalate, as a by-product of photosynthesis, is oxidized by oxalotrophic bacteria leading to a local pH increase, and eventually to carbonate accumulation through time in previously acidic and carbonate-free tropical soils. Former studies have shown that this pedogenic process can potentially lead to the formation of an atmospheric carbon sink. Considering that 80% of plant species are known to produce oxalate, it is reasonable to assume that M. excelsa is not the only tree that can support OCP ecosystems. The search for similar conditions on another continent led us to South America, in an Amazon forest ecosystem (Alto Beni, Bolivia). This area was chosen because of the absence of local inherited carbonate in the bedrock, as well as its expected acidic soil conditions. Eleven tree species and associated soils were tested positive for the presence of carbonate with a more alkaline soil pH close to the tree than at a distance from it. A detailed study of Pentaplaris davidsmithii and Ceiba speciosa trees showed that oxalotrophy impacted soil pH in a similar way to at African sites (at least with 1 pH unit increasing). African and South American sites display similar characteristics regarding the mineralogical assemblage associated with the OCP, except for the absence of weddellite. The amount of carbonate accumulated is 3 to 4 times lower than the values measured in African sites related to M. excelsa ecosystems. Still, these secondary carbonates remain critical for the continental carbon cycle, as they are unexpected in the acidic context of Amazonian soils. Therefore, the present study demonstrates the existence of an active OCP in South America. The three critical components of an operating OCP are the presence of: i) local alkalinization, ii) carbonate accumulations, and iii) oxalotrophic bacteria, which were identified associated to the oxalogenic tree C. speciosa. If the question of a potential carbon sink related to oxalotrophic-oxalogenic ecosystems in the Amazon Basin is still pending, this study highlights the implication of OCP ecosystems on carbon and calcium biogeochemical coupled cycles. As previously mentioned for M. excelsa tree ecosystems in Africa, carbonate accumulations observed in the Bolivian tropical forest could be extrapolated to part or the whole Amazon Basin and might constitute an important reservoir that must be taken into account in the global carbon balance of the Tropics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regions under tropical rainforest cover, such as central Africa and Brazil are characterised by degradation and dismantling of old ferricrete structures. In southern Cameroon, these processes are relayed by present-day ferruginous accumulation soil facies, situated on the middle and the lower part of hill slopes. These facies become progressively harder towards the surface, containing from bottom to top, mainly kaolinite, kaolinite-goethite and Al-rich goethite-hematite, and are discontinuous to the relictic hematite-dominated ferricrete that exist in the upper part of the hill slope. These features were investigated in terms of geochemical differentiation of trace elements. It appears that, in contrast to the old ferricrete facies, the current ferruginous accumulations are enriched in transitional trace elements (V, Cr, Co, Y, Sc) and Ph, while alkali-earth elements are less differentiated. This recent chemical accumulation is controlled both by intense weathering of the granodiorite bedrock and by mobilisation of elements previously accumulated in the old ferricrete. The observed processes are clearly linked to the present-day humid climate with rising groundwater tables. They slowly replace the old ferricretes formed during Cretaceous time under more seasonal climatic conditions, representing an instructive case of continuos global change. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below-ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km(2)). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity-area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine-scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage-specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The top soil of a 14.5 km(2) region at la Chaux-de-Fonds in the Swiss Jura is exceptionally rich in cadmium. It contains an average of 1.3 mg per kg of soil. The spatial distribution of the metal has no simple pattern that could be explained by atmospheric deposition or agricultural practices. Thin soil contained most of its Cd at the surface; in thicker soil Cd is mainly concentrated between 60 and 80 cm depth. No specific minerals or soil fractions could account for these accumulation, and the vertical distribution of Cd is best explained by leaching from the topsoil and further adsorption within layers of nearly neutral pH. The local Jurassic sedimentary rocks contained too little Cd to account for the Cd concentrations in the soil. Alpine gravels from glacial till were too sparse in soils to explain such a spreading of Cd. Moreover this origin is contradictory with the fact that Cd is concentrated in the sand fraction of soils. The respective distributions of Fe and Cd in soils, and soil fractions, suggested that the spreading of iron nodules accumulated during the siderolithic period (Eocene) was not the main source of Cd. Atmospheric deposition, and spreading of fertiliser or waste from septic tanks seem the only plausible explanation for the Cd concentrations, but at present few factors allow us to differentiate between them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.