6 resultados para Software Psychology
em Université de Lausanne, Switzerland
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
Recently, morphometric measurements of the ascending aorta have been done with ECG-gated multidector computerized tomography (MDCT) to help the development of future novel transcatheter therapies (TCT); nevertheless, the variability of such measurements remains unknown. Thirty patients referred for ECG-gated CT thoracic angiography were evaluated. Continuous reformations of the ascending aorta, perpendicular to the centerline, were obtained automatically with a commercially available computer aided diagnosis (CAD). Then measurements of the maximal diameter were done with the CAD and manually by two observers (separately). Measurements were repeated one month later. The Bland-Altman method, Spearman coefficients, and a Wilcoxon signed-rank test were used to evaluate the variability, the correlation, and the differences between observers. The interobserver variability for maximal diameter between the two observers was up to 1.2 mm with limits of agreement [-1.5, +0.9] mm; whereas the intraobserver limits were [-1.2, +1.0] mm for the first observer and [-0.8, +0.8] mm for the second observer. The intraobserver CAD variability was 0.8 mm. The correlation was good between observers and the CAD (0.980-0.986); however, significant differences do exist (P<0.001). The maximum variability observed was 1.2 mm and should be considered in reports of measurements of the ascending aorta. The CAD is as reproducible as an experienced reader.
Resumo:
In this article, we show how the use of state-of-the-art methods in computer science based on machine perception and learning allows the unobtrusive capture and automated analysis of interpersonal behavior in real time (social sensing). Given the high ecological validity of the behavioral sensing, the ease of behavioral-cue extraction for large groups over long observation periods in the field, the possibility of investigating completely new research questions, and the ability to provide people with immediate feedback on behavior, social sensing will fundamentally impact psychology.