17 resultados para Social biology
em Université de Lausanne, Switzerland
Resumo:
Ants are powerful model systems for the study of cooperation and sociality. In this review, we discuss how recent advances in ant genomics have contributed to our understanding of the evolution and organization of insect societies at the molecular level.
Resumo:
BACKGROUND: The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein's bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. RESULTS: We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. CONCLUSIONS: Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host.
Resumo:
Dominance hierarchies pervade animal societies. Within a static social environment, in which group size and composition are unchanged, an individual's hierarchy rank results from intrinsic (e.g. body size) and extrinsic (e.g. previous experiences) factors. Little is known, however, about how dominance relationships are formed and maintained when group size and composition are dynamic. Using a fusion-fission protocol, we fused groups of previously isolated shore crabs (Carcinus maenas) into larger groups, and then restored groups to their original size and composition. Pre-fusion hierarchies formed independently of individuals' sizes, and were maintained within a static group via winner/loser effects. Post-fusion hierarchies differed from pre-fusion ones; losing fights during fusion led to a decline in an individual's rank between pre- and post-fusion conditions, while spending time being aggressive during fusion led to an improvement in rank. In post-fusion tanks, larger individuals achieved better ranks than smaller individuals. In conclusion, dominance hierarchies in crabs represent a complex combination of intrinsic and extrinsic factors, in which experiences from previous groups can carry over to affect current competitive interactions.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
Social insects not only live altruistically, they die so: a new study reveals that moribund ants abandon their nests to die in seclusion, which reduces the risk of transmitting diseases to relatives.
Resumo:
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.
Resumo:
Caste differentiation and division of labor are the hallmarks of social insect colonies [1, 2]. The current dogma for female caste differentiation is that female eggs are totipotent, with morphological and physiological differences between queens and workers stemming from a developmental switch during the larval stage controlled by nutritional and other environmental factors (e.g., [3-8]). In this study, we tested whether maternal effects influence caste differentiation in Pogonomyrmex harvester ants. By conducting crossfostering experiments we identified two key factors in the process of caste determination. New queens were produced only from eggs laid by queens exposed to cold. Moreover, there was a strong age effect, with development into queens occurring only in eggs laid by queens that were at least two years old. Biochemical analyses further revealed that the level of ecdysteroids was significantly lower in eggs developing into queens than workers. By contrast, we found no significant effect of colony size or worker exposure to cold, suggesting that the trigger for caste differentiation may be independent of the quantity and quality of resources provided to larvae. Altogether these data demonstrate that the developmental fate of female brood is strongly influenced by maternal effects in ants of the genus Pogonomyrmex.
Resumo:
The aim of this study was to investigate levels of expression of two major genes, the odorant binding protein Gp-9 (general protein-9) and foraging, that have been shown to be associated with behavioural polymorphisms in ants. We analysed workers and young nonreproductive queens collected from nests of the monogyne (single reproductive queen per nest) and polygyne (multiple reproductive queens) social forms of Solenopsis invicta. In workers but not young queens, the level of foraging expression was significantly associated with social form and the task performed (ie localization in the nest or foraging area). The level of expression of Gp-9 was also associated with social form and worker localization. In addition there was a higher level of expression of the Gp-9(b) allele compared with the Gp-9(B) allele in the heterozygote workers and the young nonreproductive queens. Finally, in the polygyne colonies the level of expression of foraging was not significantly associated with the Gp-9 genotype for either workers or young nonreproductive queens, suggesting that both genes have independent non-epistatic effects on behaviour in S. invicta.
Resumo:
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single-queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker)generations cohabiting within an ant colony.
Resumo:
Expression of colony social organization in fire ants appears to be under the control of a single Mendelian factor of large effect. Variation in colony queen number in Solenopsis invicta and its relatives is associated with allelic variation at the gene Gp-9, but not with variation at other unlinked genes; workers regulate queen identity and number on the basis of Gp-9 genotypic compatibility. Nongeneticfactors, such as prior social experience, queen reproductive status, and local environment, have negligible effects on queen number which illustrates the nearly complete penetrance of Gp-9. As predicted, queen number can be manipulated experimentally by altering worker Gp-9 genotype frequencies. The Gp-9 allele lineage associated with polygyny in South American fire? ants has been retained across multiple speciation events, which may signal the action of balancing selection to maintain social polymorphism in these species. Moreover positive selection is implicated in driving the molecular evolution of Gp-9 in association with the origin of polygyny. The identity of the product of Gp-9 as an odorant-binding protein suggests plausible scenarios for its direct involvement in the regulation of queen number via a role in chemical communication. While these and other lines of evidence show that Gp-9 represents a legitimate candidate gene of major effect, studies aimed at determining (i) the biochemical pathways in which GP-9 functions; (ii) the phenotypic effects of molecular variation at Gp-9 and other pathway genes; and (iii) the potential involvement of genes in linkage disequilibrium with Gp-9 are needed to elucidate the genetic architecture underlying social organization in fire ants. Information that reveals the links between molecular variation, individual phenotype, and colony-level behaviors, combined with behavioral models that incorporate details of the chemical communication involved in regulating queen number will yield a novel integrated view of the evolutionary changes underlying a key social adaptation.
Resumo:
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross-fostered eggs originating from single-queen (= monogynous) or multiple-queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.
Resumo:
Coercion is a powerful means to enforce altruism and promote social cohesion in animal groups, but it requires the reliable identification of selfish individuals. Experiments in a desert ant provide the first direct proof that a single cuticular hydrocarbon elicits the policing of reproductive workers by other colony members.
Resumo:
Summary Among ants, wood ants are probably the most fascinating and studied species in temperate European forests. Unfortunately, due to several threats they are nowadays registered in red lists. Recent studies made in the Swiss Jura Mountains ended up in the description of a new sympatric sibling species of Formica lugubris (i.e. Formica paralugubris Seifert 1996). Because of this confusion the biology of F. lugubris is incomplete. Due to the extreme difficulties to distinguish morphologically F. lugubris from F. paralugubris we studied their cuticular hydrocarbons profiles. Irrespective of their geographic origin, we observed quantitative discrimination between species within each caste (workers, males and gynes =young alate female). Moreover, using a behavioural taxonomic approach (i.e. the pupa-carrying test) we showed that ants preferred conspecific worker pupae to those of the sibling species. These first results allowed us to consider the two species as two separate taxonomic units. To understand their coexistence, habitat distribution models were fitted with GIS predictors and factors known to influence wood ant distribution. In the Jura Mountains, although the two species share very similar habitats, they are spatially segregated. F. lugubris occurs more frequently at woodland borders than in forest interiors. We demonstrated with genetic and field data that Formica lugubris displays two different social forms in close proximity in alpine zone (e.g. unmanaged forests of the Swiss National Park). We discovered populations mostly monogynous to weakly polygynous (i.e. one to a few egg laying queens per colony) and monodomous (i.e. one nest per colony), and polygynous/polydomous populations (new nests being founded by colony budding). It is generally admitted that monogyne species disperse well in order to find suitable habitat to found new colonies whereas polygyne species have restricted dispersal and local mating within the nest. In order to compare reproductive strategies of F. lugubris and F. paralugubris (i.e. matings and dealation process) we conducted experiments with sexuals. F, lugubris gynes from monogynous/monodomous populations do not show a local strategy like the obligately polygynous F. paralugubris (i.e. early dealation even without mating, insemination without flight activity and low fat reserve). They always keep their wings, do not mate when not able to fly and have high amount of fat content revealing high survival capacities. On the other side, F, lugubris gynes from polygynous/polydomous populations have lower lipid reserves and displayed a reproductive behaviour close to the F. para lugubris one. After dispersal, wood ant gynes can either start new societies by temporary social parasitism of another species (i.e. subgenus Serviformica) or be adopted intraspecifically in an existing nest. In F. lugubris, we demonstrated that gynes from monogynous/monodomous colonies showed a high success for temporary social parasitism compare to the lower success of gynes from polygynous/polydomous colonies. However, physiological analyses suggested that only gynes from monogynous/ monodomous populations can efficiently disperse and found new nest by temporary social parasitism. Intraspecifically, gynes were accepted to a high degree in polygynous nest and in monogynous nests as long as these nests contained sexuals. In conclusion, Formica lugubris displays a social and dispersal polymorphism (mixed mating and founding system) representing a behavioural plasticity in relation to environmental and ecological conditions. Therefore, conservation measures directed toward this species should try to maintain a maximum of diversity at the habitat level. Résumé Les fourmis des bois sont probablement parmi les espèces de fourmis les plus fascinantes et les plus étudiées des forêts tempérées Européennes. Actuellement, du fait de différentes menaces, elles figurent malheureusement sur listes rouges. Plusieurs études menées au sein du Jura Suisse ont abouti à la description d'une nouvelle espèce jumelle et sympatrique de Formica lugubris (F. para- lugubris Seifert 1996). A cause de cette confusion la biologie de F lugubris est lacunaire. La distinction morphologique de F. lugubris et de F. para lugubris est si difficile que nous avons étudié leurs hydrocarbures cuticulaires. Indépendamment de l'origine géographique, nous avons observé une discrimination quantitative entre les espèces au sein de chaque caste (ouvrières, mâles et jeunes femelles ailées). De plus, à l'aide d'une approche taxonomique comportementale (le test de transport de cocons) nous avons montré que les fourmis préfèrent des cocons d'ouvrières conspécifiques à ceux de l'espèce jumelle. Ces premiers résultats nous permettent de considérer ces deux espèces comme deux unités taxonomiques distinctes et valables. Afin de comprendre leur coexistence, des modèles mathématiques ont été développés avec des données SIG et des facteurs écologiques influençant la répartition des fournis des bois. Dans le Jura, même si elles partagent des habitats fortement similaires, les deux espèces n'occupent pas les mêmes secteurs. F. lugubris est plus fréquente en lisière forestière plutôt qu'en pleine forêt. Nous avons démontré grâce à des données génétiques et de terrain que F. lugubris présente deux formes sociales au sein de la zone alpine (forêts protégées du Parc National Suisse). D'autre part, nous avons découvert des populations monogynes à faiblement polygynes (une à quelques reines pondeuses par colonie) et monodomes (colonies composées d'une seule fourmilière), et des populations polygynes/polydomes (les nouveaux nids étant produit par bourgeonnement). Généralement, les espèces monogynes dispersent sur de grandes distances et peuvent coloniser des habitats favorables à la fondation de nouvelles colonies alors que les espèces polygynes possèdent une dispersion limitée avec des accouplements à l'intérieur des nids. Afin de comparer les stratégies de reproduction de F. lugubris et de F. paralugubris (accouplements et perte des ailes) nous avons mené des expériences avec les sexués. Les jeunes femelles ailées de F. lugubris issues de populations monogynes/monodomes ne présentent pas de stratégie locale comparée à l'espèce obligatoirement polygyne F paralugubris (perte des ailes précoce même si il n'y a pas eu accouplement, insémination possible sans avoir volé activement et faibles réserves de graisse). Elles conservent toujours leurs ailes, ne s'accouplent pas lorsqu'elles sont empêchées de voler et possèdent de grandes quantités de graisse révélant de fortes capacités de survie. D'autre part, les jeunes femelles ailées de F. lugubris provenant de populations polygynes/polydomes ont peu de réserves lipidiques et ont un comportement de reproduction proche de celles de F. paralugubris. Après leur dispersion, les jeunes sexués femelles de fourmis des bois peuvent soit fonder une nouvelle société par parasitisme social temporaire d'un nid d'une autre espèce (sous-genre Serviformica) soit être adoptées dans un nid déjà existant de leur propre espèce. Chez F. lugubris, nous avons pu démontrer que les jeunes sexués femelles de colonies monogynes/monodomes présentent un succès élevé au parasitisme sociale temporaire en comparaison au plus faible succès obtenu avec des sexués provenant de colonies polygynes/polydomes. Cependant, les données physiologiques suggèrent que seules les jeunes sexués femelles de populations mono-gynes/monodomes peuvent disperser efficacement et fonder un nouveau nid par parasitisme social temporaire. Au niveau intraspécifique, les jeunes femelles sont acceptées à un taux élevé dans les nids polygynes mais aussi dans les nids monogynes tant que ces nids possèdent encore de jeunes sexués. En conclusion, F. lugubris est caractérisée par un polymorphisme dans ses structures sociales et ses stratégies de dispersion (système mixte d'accouplement et de fondation) ce qui représente une forte plasticité comportementale en relation avec les conditions environnementales et écologiques. Par conséquent, les mesures de conservation de cette espèce devraient s'attacher à maintenir un maximum de diversité au niveau des habitats.
Resumo:
The dress code of paper wasps, like that of humans, is related to their social habits: species with a flexible nest-founding strategy have highly variable black-and-yellow markings. This color polymorphism facilitates individual recognition and might have been selected to permit complex social interactions.
Resumo:
Review of the book . Social Evolution in Ants. Bourke, A. F. G. and Franks, N. R. 1995. Princeton University Press, Princeton, New Jersey, xiii + 529 pp. ISBN o-691-04427-9 (cl), O-691 -04426-o (pbk)