8 resultados para Snow, Neil
em Université de Lausanne, Switzerland
Resumo:
This paper presents the Juste-Neige system for predicting the snow height on the ski runs of a resort using a multi-agent simulation software. Its aim is to facilitate snow cover management in order to i) reduce the production cost of artificial snow and to improve the profit margin for the companies managing the ski resorts; and ii) to reduce the water and energy consumption, and thus to reduce the environmental impact, by producing only the snow needed for a good skiing experience. The software provides maps with the predicted snow heights for up to 13 days. On these maps, the areas most exposed to snow erosion are highlighted. The software proceeds in three steps: i) interpolation of snow height measurements with a neural network; ii) local meteorological forecasts for every ski resort; iii) simulation of the impact caused by skiers using a multi-agent system. The software has been evaluated in the Swiss ski resort of Verbier and provides useful predictions.
Resumo:
This volume is the result of a collective desire to pay homage to Neil Forsyth, whose work has significantly contributed to scholarship on Satan. This volume is "after" Satan in more ways than one, tracing the afterlife of both the satanic figure in literature and of Neil Forsyth's contribution to the field, particularly in his major books The Old Enemy: Satan and the Combat Myth (Princeton University Press, 1987, revised 1990) and The Satanic Epic (Princeton University Press, 2003). The essays in this volume draw on Forsyth's work as a focus for their analyses of literary encounters with evil or with the Devil himself, reflecting the richness and variety of contemporary approaches to the age-old question of how to represent evil. All the contributors acknowledge Neil Forsyth's influence in the study of both the Satan-figure and Milton's Paradise Lost. But beyond simply paying homage to Neil Forsyth, the articles collected here trace the lineage of the Satan figure through literary history, showing how evil can function as a necessary other against which a community may define itself. They chart the demonised other through biblical history and medieval chronicle, Shakespeare and Milton, to nineteenth-century fiction and the contemporary novel. Many of the contributors find that literary evil is mediated through the lens of the Satan of Paradise Lost, and their articles address the notion, raised by Neil Forsyth in The Satanic Epic, that the literary Devil-figures under consideration are particularly interested in linguistic ambivalence and the twisted texture of literary works themselves. The multiple responses to evil and the continuous reinvention of the devil figure through the centuries all reaffirm the textual presence of the Devil, his changing forms necessarily inscribed in the shifting history of western literary culture. These essays are a tribute to the work of Neil Forsyth, whose scholarship has illuminated and guided the study of the Devil in English and other literatures.
Resumo:
To elucidate the evolutionary history of snow voles, genus Chionomys, we studied the phylogeography of Chionomysnivalis across its range and investigated its relationships with two congeneric species, Chionomysgud and Chionomysroberti, using independent molecular markers. Analyses were based on mitochondrial (~940 bp cyt b) and Y-chromosomal (~2020 bp from three introns) genetic variation. Our data provide conclusive evidence for a Caucasian and Middle Eastern origin for the three species and a subsequent westward expansion of C.nivalis. In addition, we discuss the taxonomic status of the genus Chionomys in relation to the genus Microtus.
Resumo:
This volume is the result of a collective desire to pay homage to Neil Forsyth, whose work has significantly contributed to scholarship on Satan. This volume is "after" Satan in more ways than one, tracing the afterlife of both the satanic figure in literature and of Neil Forsyth's contribution to the field, particularly in his major books The Old Enemy: Satan and the Combat Myth (Princeton University Press, 1987, revised 1990) and The Satanic Epic (Princeton University Press, 2003). The essays in this volume draw on Forsyth's work as a focus for their analyses of literary encounters with evil or with the Devil himself, reflecting the richness and variety of contemporary approaches to the age-old question of how to represent evil. All the contributors acknowledge Neil Forsyth's influence in the study of both the Satan-figure and Milton's Paradise Lost. But beyond simply paying homage to Neil Forsyth, the articles collected here trace the lineage of the Satan figure through literary history, showing how evil can function as a necessary other against which a community may define itself. They chart the demonised other through biblical history and medieval chronicle, Shakespeare and Milton, to nineteenth-century fiction and the contemporary novel. Many of the contributors find that literary evil is mediated through the lens of the Satan of Paradise Lost, and their articles address the notion, raised by Neil Forsyth in The Satanic Epic, that the literary Devil-figures under consideration are particularly interested in linguistic ambivalence and the twisted texture of literary works themselves. The multiple responses to evil and the continuous reinvention of the devil figure through the centuries all reaffirm the textual presence of the Devil, his changing forms necessarily inscribed in the shifting history of western literary culture. These essays are a tribute to the work of Neil Forsyth, whose scholarship has illuminated and guided the study of the Devil in English and other literatures.
Resumo:
Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presenceabsence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.
Resumo:
Snow cover is an important control in mountain environments and a shift of the snow-free period triggered by climate warming can strongly impact ecosystem dynamics. Changing snow patterns can have severe effects on alpine plant distribution and diversity. It thus becomes urgent to provide spatially explicit assessments of snow cover changes that can be incorporated into correlative or empirical species distribution models (SDMs). Here, we provide for the first time a with a lower overestimation comparison of two physically based snow distribution models (PREVAH and SnowModel) to produce snow cover maps (SCMs) at a fine spatial resolution in a mountain landscape in Austria. SCMs have been evaluated with SPOT-HRVIR images and predictions of snow water equivalent from the two models with ground measurements. Finally, SCMs of the two models have been compared under a climate warming scenario for the end of the century. The predictive performances of PREVAH and SnowModel were similar when validated with the SPOT images. However, the tendency to overestimate snow cover was slightly lower with SnowModel during the accumulation period, whereas it was lower with PREVAH during the melting period. The rate of true positives during the melting period was two times higher on average with SnowModel with a lower overestimation of snow water equivalent. Our results allow for recommending the use of SnowModel in SDMs because it better captures persisting snow patches at the end of the snow season, which is important when modelling the response of species to long-lasting snow cover and evaluating whether they might survive under climate change.