62 resultados para Sludge toxicity
em Université de Lausanne, Switzerland
Resumo:
This study aimed at identifying clinical factors for predicting hematologic toxicity after radioimmunotherapy with (90)Y-ibritumomab tiuxetan or (131)I-tositumomab in clinical practice. Hematologic data were available from 14 non-Hodgkin lymphoma patients treated with (90)Y-ibritumomab tiuxetan and 18 who received (131)I-tositumomab. The percentage baseline at nadir and 4 wk post nadir and the time to nadir were selected as the toxicity indicators for both platelets and neutrophils. Multiple linear regression analysis was performed to identify significant predictors (P < 0.05) of each indicator. For both platelets and neutrophils, pooled and separate analyses of (90)Y-ibritumomab tiuxetan and (131)I-tositumomab data yielded the time elapsed since the last chemotherapy as the only significant predictor of the percentage baseline at nadir. The extent of bone marrow involvement was not a significant factor in this study, possibly because of the short time elapsed since the last chemotherapy of the 7 patients with bone marrow involvement. Because both treatments were designed to deliver a comparable bone marrow dose, this factor also was not significant. None of the 14 factors considered was predictive of the time to nadir. The R(2) value for the model predicting percentage baseline at nadir was 0.60 for platelets and 0.40 for neutrophils. This model predicted the platelet and neutrophil toxicity grade to within ±1 for 28 and 30 of the 32 patients, respectively. For the 7 patients predicted with grade I thrombocytopenia, 6 of whom had actual grade I-II, dosing might be increased to improve treatment efficacy. The elapsed time since the last chemotherapy can be used to predict hematologic toxicity and customize the current dosing method in radioimmunotherapy.
Resumo:
As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARalpha ligand. Using the steroid oxysterol 7alpha-hydroxylase cytochrome P4507b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggered the interaction of PPARalpha with GA-binding protein alpha (GABPalpha) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.
Resumo:
ACuteTox is a project within the 6th European Framework Programme which had as one of its goals to develop, optimise and prevalidate a non-animal testing strategy for predicting human acute oral toxicity. In its last 6 months, a challenging exercise was conducted to assess the predictive capacity of the developed testing strategies and final identification of the most promising ones. Thirty-two chemicals were tested blind in the battery of in vitro and in silico methods selected during the first phase of the project. This paper describes the classification approaches studied: single step procedures and two step tiered testing strategies. In summary, four in vitro testing strategies were proposed as best performing in terms of predictive capacity with respect to the European acute oral toxicity classification. In addition, a heuristic testing strategy is suggested that combines the prediction results gained from the neutral red uptake assay performed in 3T3 cells, with information on neurotoxicity alerts identified by the primary rat brain aggregates test method. Octanol-water partition coefficients and in silico prediction of intestinal absorption and blood-brain barrier passage are also considered. This approach allows to reduce the number of chemicals wrongly predicted as not classified (LD50>2000 mg/kg b.w.).
Resumo:
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.
Resumo:
PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.
Resumo:
This report presents a case of acute lung injury developing within hours after administration of mefloquine for a low-level Plasmodium falciparum malaria, which was persistent despite halofantrine therapy. Extensive microbiological investigation remained negative and video-assisted thoracoscopic lung biopsy demonstrated diffuse alveolar damage. The evolution was favourable without treatment. This is the second report of acute lung injury and diffuse alveolar damage caused by mefloquine. Glucose-6-phosphate dehydrogenase deficiency was present in the former case and was thought to contribute to the lung injury. However, glucose-phosphate dehydrogenase was normal in the present case, suggesting that it is not a predisposing condition to the lung injury.
Resumo:
Cationic liposomes, 1:1 (mol/mol) 1,2-dioleoyldimethylammonium chloride-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, were used to transfect primary cultures of distal rat fetal lung epithelial cells with pCMV4-based plasmids. A DNA-to-lipid ratio of 1:10 to 1:15 (wt/wt) optimized DNA uptake over a 24-h exposure. At a fixed DNA-to-lipid ratio of 1:15, chloramphenicol acetyltransferase (CAT) reporter gene expression declined at lipid concentrations > 2.5 nmol/cm2 cell surface area, whereas DNA uptake remained concentration dependent. CAT expression peaked 48 h after removal of the liposome-DNA complex, declining thereafter. Reporter gene expression was increased, and supercoiled cDNA degradation was reduced by the addition of 0.2 mM nicotinamide and 10 microM chloroquine. Rat fetal lung epithelial cells transfected with two different expression cassettes had an increased susceptibility to superoxide-mediated cytotoxicity. This could be attributed to a nonspecific delivery of exogenous DNA or some other copurified factor. The DNA-dependent increase in superoxide-mediated cytotoxicity, but not basal levels of cytotoxicity, was inhibited by the addition of 0.2 mM nicotinamide and 10 microM chloroquine.
Resumo:
As part of the ACuteTox project aimed at the development of non-animal testing strategies for predicting human acute oral toxicity, aggregating brain cell cultures (AGGR) were examined for their capability to detect organ-specific toxicity. Previous multicenter evaluations of in vitro cytotoxicity showed that some 20% of the tested chemicals exhibited significantly lower in vitro toxicity as expected from in vivo toxicity data. This was supposed to be due to toxicity at supracellular (organ or system) levels. To examine the capability of AGGR to alert for potential organ-specific toxicants, concentration-response studies were carried out in AGGR for 86 chemicals, taking as endpoints the mRNA expression levels of four selected genes. The lowest observed effect concentration (LOEC) determined for each chemical was compared with the IC20 reported for the 3T3/NRU cytotoxicity assay. A LOEC lower than IC20 by at least a factor of 5 was taken to alert for organ-specific toxicity. The results showed that the frequency of alerts increased with the level of toxicity observed in AGGR. Among the chemicals identified as alert were many compounds known for their organ-specific toxicity. These findings suggest that AGGR are suitable for the detection of organ-specific toxicity and that they could, in conjunction with the 3T3/NRU cytotoxicity assay, improve the predictive capacity of in vitro toxicity testing.
Resumo:
Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases.
Resumo:
INTRODUCTION: The EORTC 22922/10925 trial investigated the potential survival benefit and toxicity of elective irradiation of the internal mammary and medial supraclavicular (IM-MS) nodes Accrual completed in January 2004 and first results are expected in 2012. We present the toxicity reported until year 3 after treatment. PATIENTS AND METHODS: At each visit, toxicity was reported but severity was not graded routinely. Toxicity rates and performance status (PS) changes at three years were compared by chi(2) tests and logistic regression models in all the 3,866 of 4,004 patients eligible to the trial who received the allocated treatment. RESULTS: Only lung (fibrosis; dyspnoea; pneumonitis; any lung toxicities) (4.3% vs. 1.3%; p < 0.0001) but not cardiac toxicity (0.3% vs. 0.4%; p = 0.55) significantly increased with IM-MS treatment. No significant worsening of the PS was observed (p = 0.79), suggesting that treatment-related toxicity does not impair patient's daily activities. CONCLUSIONS: IM-MS irradiation seems well tolerated and does not significantly impair WHO PS at three years. A follow-up period of at least 10 years is needed to determine whether cardiac toxicity is increased after radiotherapy.
Resumo:
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.
Resumo:
BACKGROUND: carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis.RESULTS: extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months.CONCLUSIONS: these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.
Resumo:
Attempts over the past 50 years to explain variation in the abundance, distribution and diversity of plant secondary compounds gave rise to theories of plant defense. Remarkably, few phylogenetically robust tests of these long-standing theories have been conducted. Using >50 species of milkweed (Asclepias spp.), we show that variation among plant species in the induction of toxic cardenolides is explained by latitude, with higher inducibility evolving more frequently at lower latitudes. We also found that: (1) the production of cardenolides showed positive-correlated evolution with the diversity of cardenolides, (2) greater cardenolide investment by a species is accompanied by an increase in an estimate of toxicity (measured as chemical polarity) and (3) instead of trading off, constitutive and induced cardenolides were positively correlated. Analyses of root and shoot cardenolides showed concordant patterns. Thus, milkweed species from lower latitudes are better defended with higher inducibility, greater diversity and added toxicity of cardenolides.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.