5 resultados para Silicon nitride ceramics
em Université de Lausanne, Switzerland
Resumo:
Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.
Resumo:
We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.
Resumo:
This paper reports molar heat capacities of Ru50SixGe(50-x) and Ru40SiyGe(60-y) ternary solid solutions determined by differential scanning calorimetry. A second order transition has been characterised for alloys ranging from Ru40Ge60 to Ru40Si10Ge50 at temperatures ranging from 850 to 1040 K, respectively. Tie lines have been established at 1000-900-800-700-600 degrees C by electron microprobe measurements on annealed alloys of the two phase domains: Ru50SixGe(50-x)-Ru40SiyGe(60-y) and Ru40SiyGe(60-y)-SizGe(100-z).
Resumo:
The Ruthenium-Silicon system has been completely revised using differential thermal analysis, X-ray diffraction and electron microprobe investigations. The two equiatomic compound structures (CsCl and FeSi types) have been identified as two different phases. The occurrence of Ru,Si, was not confirmed. (C) 1999 Elsevier Science S.A. All rights reserved.