98 resultados para Shiga-toxin
em Université de Lausanne, Switzerland
Resumo:
Several evidences suggest that astrocytes release small transmitter molecules, peptides, and protein factors via regulated exocytosis, implying that they function as specialized neurosecretory cells. However, very little is known about the molecular and functional properties of regulated secretion in astrocytes in the adult brain. Establishing these properties is central to the understanding of the communication mode(s) of these cells and their role(s) in the control of synaptic functions and of cerebral blood flow. In this study, we have set-up a high-resolution confocal microscopy approach to distinguish protein expression in astrocytic structures and neighboring synaptic terminals in adult brain tissue. This approach was applied to investigate the expression pattern of core SNARE proteins for vesicle fusion in the dentate gyrus and CA1 regions of the mouse hippocampus. Our comparative analysis shows that astrocytes abundantly express, in their cell body and main processes, all three protein partners necessary to form an operational SNARE complex but not in the same isoforms expressed in neighbouring synaptic terminals. Thus, SNAP25 and VAMP2 are absent from astrocytic processes and typically concentrated in terminals, while SNAP23 and VAMP3 have the opposite expression pattern. Syntaxin 1 is present in both synaptic terminals and astrocytes. These data support the view that astrocytes in the adult hippocampus can communicate via regulated exocytosis and also indicates that astrocytic exocytosis may differ in its properties from action potential-dependent exocytosis at neuronal synapses, as it relies on a distinctive set of SNARE proteins.
Resumo:
Background: Hemolytic-uremic syndrome (HUS) is a multisystem disorder associated with significant morbidity and mortality. Typically, HUS is preceded by an episode of (bloody) diarrhea mostly due to Shiga-toxin (Stx) producing Escherichia coli (STEC). The main reservoir for STEC is the intestine of healthy ruminants, mostly cattle, and recent studies have revealed an association between indicators of livestock density and human STEC infection or HUS, respectively. Nationwide data on HUS in Switzerland have been established through the Swiss Pediatric Surveillance Unit (SPSU) [Schifferli et al. Eur J Pediatr. 2010; 169:591-8]. Aims: Analysis of age-specific incidence rate of childhood HUS and possible association of Shiga-toxin associated HUS (Stx-HUS) with indicators of livestock farming intensity. Methods: Epidemiological and ecological analysis based on the SPSU data (1997-2003) and the database of the Swiss Federal Statistical Office (data on population and agriculture). Results: One hundred-fourteen cases were registered, 88% were ≤5 years old. The overall annual incidence rate was 1.42 (0.60-1.91) and 4.23 (1.76-6.19) per 100000 children ≤5 and ≤16 years, respectively (P = 0.005). Stx-HUS was more frequent compared to cases not associated with STEC (P = 0.002). The incidence rate for Stx-HUS was 3.85 (1.76-5.65) in children ≤5, compared to 0.27 (0.00-0.54) per 100'000 children 5-16 years (P = 0.002), respectively. The incidence rate of cases not associated with STEC infection did not significantly vary with age (P = 0.107). Compared to data from Scotland, Canada, Ireland, Germany, England, Australia, Italy, and Austria the annual incidence rate of HUS in young children is highest in Switzerland. Ecological analysis revealed strong association between the incidence rate of Stx-HUS and indicators of rural occupation (agricultural labourer / population, P = 0.030), farming intensity (livestock breeding farms / population, P = 0.027) and cattle density (cattle / cultivated area, P = 0.013). Conclusions: Alike in other countries, HUS in Switzerland is mostly associated with STEC infection and affects predominantly young children. However, the incidence rate is higher compared to countries abroad and is significantly correlated with indicators of livestock farming intensity. The present data support the impact of direct and indirect contact with animals or fecal contaminants in transmission of STEC to humans.
Resumo:
There is growing interest in the association of radiotherapy and immunotherapy for the treatment of solid tumors. Here, we report an extremely effective combination of local irradiation (IR) and Shiga Toxin B (STxB)-based human papillomavirus (HPV) vaccination for the treatment of HPV-associated head and neck squamous cell carcinoma (HNSCC). The efficacy of the irradiation and vaccine association was tested using a model of HNSCC obtained by grafting TC-1/luciferase cells at a submucosal site of the inner lip of immunocompetent mice. Irradiation and the STxB-E7 vaccine acted synergistically with both single and fractionated irradiation schemes, resulting in complete tumor clearance in the majority of the treated mice. A dose threshold of 7.5 Gy was required to elicit the dramatic antitumor response. The combined treatment induced high levels of tumor-infiltrating, antigen-specific CD8(+) T cells, which were required to trigger the antitumor activity. Treatment with STxB-E7 and irradiation induced CD8(+) T-cell memory, which was sufficient to exert complete antitumor responses in both local recurrences and distant metastases. We also report for the first time that a combination therapy based on local irradiation and vaccination induces an increased pericyte coverage (as shown by αSMA and NG2 staining) and ICAM-1 expression on vessels. This was associated with enhanced intratumor vascular permeability that correlated with the antitumor response, suggesting that the combination therapy could also act through an increased accessibility for immune cells. The combination strategy proposed here offers a promising approach that could potentially be transferred into early-phase clinical trials.
Resumo:
Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype-phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS.
Resumo:
The present pilot study evaluated the effect of botulinum toxin A on primarily non-dystonic tremors using accelerometry in a single-blind, placebo-controlled design. Resting, postural, intention, or head tremor were assessed before and approximately 1 month after intramuscular saline and botulinum toxin A (25-50 U) respectively. Half of the patients showed > or = 30% placebo effect. Tremor in 10 of 17 patients (60%) studied improved further after botulinum toxin A (range 30-95%), exceeding the placebo effect by > or = 30%. Nine patients demonstrated clinically significant focal weakness in the extensor muscles after botulinum toxin A which interfered with fine movements. Patients were subdivided into PD-like and ET-like tremor(s). Both groups experienced large placebo effects for resting tremor, with little or no further improvement after botulinum toxin A. The improvement in postural tremor after botulinum toxin A, of 40% in the PD-like and 57% in the ET-like groups, however, was approximately twice that of placebo. In conclusion, botulinum toxin A exerts a modest tremorlytic effect, however the dose, and its distribution over the sites injected, need to be optimised to minimise focal weakness.
Resumo:
Pseudomonas fluorescens CHA0 is a root-associated biocontrol agent that suppresses soil-borne fungal diseases of crops. Remarkably, the pseudomonad is also endowed with systemic and oral activity against pest insects which depends on the production of the insecticidal Fit toxin. The toxin gene (fitD) is part of a virulence cassette encoding three regulators (FitF, FitG, FitH) and a type I secretion system (FitABC-E). Immunoassays with a toxin-specific antibody and transcriptional analyses involving fitG and fitH deletion and overexpression mutants identified LysR family regulator FitG and response regulator FitH as activator and repressor, respectively, of Fit toxin and transporter expression. To visualize and quantify toxin expression in single live cells by fluorescence microscopy, we developed reporters which in lieu of the native toxin protein express a fusion of the Fit toxin with red fluorescent mCherry. In a wild-type background, expression of the mCherry-tagged Fit toxin was activated at high levels in insect hosts, i.e. when needed, yet not on plant roots or in batch culture. By contrast, a derepressed fitH mutant expressed the toxin in all conditions. P. fluorescens hence can actively induce insect toxin production in response to the host environment, and FitH and FitG are key regulators in this mechanism.
Resumo:
BACKGROUND: Serial casting is often prescribed after botulinum toxin injections to improve joint ranges of motion and to potentiate the decrease in hypertonia. The aim of this study was to compare delayed versus immediate serial casting as an adjunct to botulinum toxin therapy for partially reducible spastic equinus. METHODS: Twelve children who presented spastic equinus associated with mild gastrosoleus contracture took part. Five of them had a diagnosis of spastic diplegia, whereas 7 had a diagnosis of congenital hemiplegia. Children were randomized to immediate serial casting (same day) or delayed serial casting (4 weeks later) after botulinum toxin injection to their gastrosolei. Casts were replaced weekly for 3 weeks. RESULTS: Three children complained of pain that required recasting in the immediate casting group versus none in the delayed casting group (P = 0.08). At 3 months, there was a 27-degree improvement in the fast dorsiflexion angle (Tardieu R1) in the delayed casting group versus 17 degrees in the immediate casting group (P = 0.029). At 6 months, a 19-degree improvement persisted in the delayed group compared with 11 degrees in the immediate group (P = 0.010). CONCLUSIONS: There is a clear benefit in delaying serial casting after the injection of botulinum toxin in the recurrence of spasticity at the gastrosoleus that may also offer an advantage regarding the incidence of painful episodes associated with casting. Most importantly, reducing the recurrence of spasticity by delayed serial casting may offer the possibility of decreasing the frequency of botulinum toxin reinjections.
Resumo:
The two exotoxins A and B produced by Clostridium difficile are responsible for antibiotic-associated enterocolitis in human and animals. When added apically to human colonic carcinoma-derived T84 cell monolayers, toxin A, but not toxin B, abolished the transepithelial electrical resistance and altered the morphological integrity. Apical addition of suboptimal concentration of toxin A made the cell monolayer sensitive to toxin B. Both toxins induced drastic and rapid epithelial alterations when applied basolaterally with a complete disorganization of tight junctions and vacuolization of the cells. Toxin A-specific IgG2a from hybridoma PCG-4 added apically with toxin A alone or in combination with toxin B abolished the toxin-induced epithelial alterations for up to 8 h. The Ab neutralized basolateral toxin A for 4 h, but not the mixture of the two toxins. Using an identical Ab:Ag ratio, we found that recombinant polymeric IgA (IgAd/p) with the same Fv fragments extended protection against toxin A for at least 24 h in both compartments. In contrast, the recombinant monomeric IgA counterpart behaved as the PCG-4 IgG2a Ab. The direct comparison between different Ig isotype and molecular forms, but of unique specificity, demonstrates that IgAd/p Ab is more efficient in neutralizing toxin A than monomeric IgG and IgA. We conclude that immune protection against C. difficile toxins requires toxin A-specific secretory Abs in the intestinal lumen and IgAd/p specific for both toxins in the lamina propria.
Resumo:
L-2-Amino-4-methoxy-trans-3-butenoic acid (AMB) is a toxic antimetabolite produced by the opportunistic pathogen Pseudomonas aeruginosa. To evaluate its importance as a potential virulence factor, we tested the host response towards AMB using an Acanthamoeba castellanii cell model. We found that AMB (at concentrations ≥ 0.5 mM) caused amoebal encystment in salt buffer, while inhibiting amoebal growth in rich medium in a dose-dependent manner. However, no difference in amoebal plaque formation was observed on bacterial lawns of wild type and AMB-negative P. aeruginosa strains. We thereby conclude that AMB may eventually act as a virulence factor, but only at relatively high concentrations.
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.
Resumo:
Inflammasome-mediated IL-1beta production is central to the innate immune defects that give rise to certain autoinflammatory diseases and may also be associated with the generation of IL-17-producing CD4(+) T (Th17) cells that mediate autoimmunity. However, the role of the inflammasome in driving adaptive immunity to infection has not been addressed. In this article, we demonstrate that inflammasome-mediated IL-1beta plays a critical role in promoting Ag-specific Th17 cells and in generating protective immunity against Bordetella pertussis infection. Using a murine respiratory challenge model, we demonstrated that the course of B. pertussis infection was significantly exacerbated in IL-1R type I-defective (IL-1RI(-/-)) mice. We found that adenylate cyclase toxin (CyaA), a key virulence factor secreted by B. pertussis, induced robust IL-1beta production by dendritic cells through activation of caspase-1 and the NALP3-containing inflammasome complex. Using mutant toxins, we demonstrate that CyaA-mediated activation of caspase-1 was not dependent on adenylate cyclase enzyme activity but was dependent on the pore-forming capacity of CyaA. In addition, CyaA promoted the induction of Ag-specific Th17 cells in wild-type but not IL-1RI(-/-) mice. Furthermore, the bacterial load was enhanced in IL-17-defective mice. Our findings demonstrate that CyaA, a virulence factor from B. pertussis, promotes innate IL-1beta production via activation of the NALP3 inflammasome and, thereby, polarizes T cell responses toward the Th17 subtype. In addition to its known role in subverting host immunity, our findings suggest that CyaA can promote IL-1beta-mediated Th17 cells, which promote clearance of the bacteria from the respiratory tract.
Resumo:
The root-colonizing Pseudomonas fluorescens strain CHA0 is a biocontrol agent of soil-borne plant diseases caused by fungal and oomycete pathogens. Remarkably, this plant-beneficial pseudomonad is also endowed with potent insecticidal activity that depends on the production of a large protein toxin termed Fit (for P. fluorescens insecticidal toxin). In our present work, the genomic locus encoding the P. fluorescens insect toxin is subjected to a detailed molecular analysis. The Fit toxin gene fitD is flanked upstream by the fitABC genes and downstream by the fitE gene that encode the ABC transporter, membrane fusion, and outer membrane efflux components of a type I protein secretion system predicted to function in toxin export. The fitF, fitG, and fitH genes located downstream of fitE code for regulatory proteins having domain structures typical of signal transduction histidine kinases, LysR-type transcriptional regulators, and response regulators, respectively. The role of these insect toxin locus-associated control elements is being investigated with mutants defective for the regulatory genes and with GFP-based reporter fusions to putative promoter regions upstream of the transporter genes fitA and fitE, the toxin gene fitD, and the regulatory genes fitF and fitH. Our preliminary findings suggest that the three regulators interact with known global regulators of biocontrol factor expression to control Fit toxin expression and secretion.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
Resumo:
To orchestrate immune responses, pathogen-recognition receptors have evolved sophisticated strategies to monitor pathogenic processes. In this issue of Cell Host & Microbe, a study by Cho et al. reveals a mechanism of immune recognition that relies on the sensing of cholera toxin within the endoplasmic reticulum.