146 resultados para Sex-related growth
em Université de Lausanne, Switzerland
Resumo:
One of the most relevant concerns in long-term survivors of paediatric acute lymphoblastic leukaemia (ALL) is the development of neuropsychological sequelae. The majority of the published studies report on patients treated with chemotherapy and prophylactic central nervous system (CNS) irradiation, little is known about the outcome of patients treated with chemotherapy-only regimens. Using the standardised clinical and neuropsychological instruments of the SPOG Late Effects Study, the intellectual performance of 132 paediatric ALL patients treated with chemotherapy only was compared to that of 100 control patients surviving from diverse non-CNS solid tumours. As a group, ALL and solid tumour survivors showed normal and comparable intellectual performances (mean global IQ 104.6 in both groups). The percentage of patients in the borderline range (global IQ between 70 and 85) was comparable and not higher as expected (10% cases and 13% controls, expected 16%). Only 2 (2%) of the former ALL and 1 (1%) of the solid tumour patients were in the range of mental retardation (global IQ<70). Former known risk factors described in children treated with prophylactic CNS irradiation, like a younger age at diagnosis of ALL and female gender, remained valid in chemotherapy-only treated patients. The abandonment of prophylactic CNS irradiation and its replacement by a more intensive systemic and intrathecal chemotherapy led to a reduction, but not the disappearance of late neuropsychological sequelae.
Resumo:
BACKGROUND AND PURPOSE: Recent evidence suggests that there may be more than one Gilles de la Tourette syndrome (GTS)/tic disorder phenotype. However, little is known about the common patterns of these GTS/tic disorder-related comorbidities. In addition, sex-specific phenomenological data of GTS/tic disorder-affected adults are rare. Therefore, this community-based study used latent class analyses (LCA) to investigate sex-related and non-sex-related subtypes of GTS/tic disorders and their most common comorbidities. METHODS: The data were drawn from the PsyCoLaus study (n = 3691), a population-based survey conducted in Lausanne, Switzerland. LCA were performed on the data of 80 subjects manifesting motor/vocal tics during their childhood/adolescence. Comorbid attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, depressive, phobia and panic symptoms/syndromes comprised the selected indicators. The resultant classes were characterized by psychosocial correlates. RESULTS: In LCA, four latent classes provided the best fit to the data. We identified two male-related classes. The first class exhibited both ADHD and depression. The second class comprised males with only depression. Class three was a female-related class depicting obsessive thoughts/compulsive acts, phobias and panic attacks. This class manifested high psychosocial impairment. Class four had a balanced sex proportion and comorbid symptoms/syndromes such as phobias and panic attacks. The complementary occurrence of comorbid obsessive thoughts/compulsive acts and ADHD impulsivity was remarkable. CONCLUSIONS: To the best of our knowledge, this is the first study applying LCA to community data of GTS symptoms/tic disorder-affected persons. Our findings support the utility of differentiating GTS/tic disorder subphenotypes on the basis of comorbid syndromes.
Resumo:
The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.
Resumo:
This study was designed to assess sex-related differences in the selection of an appropriate strategy when facing novelty. A simple visuo-spatial task was used to investigate exploratory behavior as a specific response to novelty. The exploration task was followed by a visual discrimination task, and the responses were analyzed using signal detection theory. During exploration women selected a local searching strategy in which the metric distance between what is already known and what is unknown was reduced, whereas men adopted a global strategy based on an approximately uniform distribution of choices. Women's exploratory behavior gives rise to a notion of a secure base warranting a sense of safety while men's behavior does not appear to be influenced by risk. This sex-related difference was interpreted as a difference in beliefs concerning the likelihood of uncertain events influencing risk evaluation. Keywords: exploration, spontaneous strategies, sex differences, decision-making.
Resumo:
BACKGROUND: Clients of street sex workers may be at higher risk for HIV infection than the general population. Furthermore, there is a lack of knowledge regarding HIV testing of clients of sex workers in developed countries. METHOD: This pilot study assessed the feasibility and acceptance of rapid HIV testing by the clients of street-based sex workers in Lausanne, Switzerland. For 5 evenings, clients in cars were stopped by trained field staff for face-to-face interviews focusing on sex-related HIV risk behaviors and HIV testing history. The clients were then offered a free anonymous rapid HIV test in a bus parked nearby. Rapid HIV testing and counselling were performed by experienced nurse practitioners. Clients with reactive tests were offered confirmatory testing, medical evaluation, and care in our HIV clinic. RESULT: We intercepted 144 men, 112 (77.8%) agreed to be interviewed. Among them, 50 (46.6%) had never been tested for HIV. A total of 31 (27.7%) rapid HIV tests were performed, 16 (51.6%) in clients who had not previously been tested. None were reactive. Initially, 19 (16.9%) additional clients agreed to HIV testing but later declined due to the 40-minute queue for testing. CONCLUSION: This pilot study showed that rapid HIV testing in the red light district of Lausanne was feasible, and that the clients of sex workers accepted testing at an unexpectedly high rate. This setting seems particularly appropriate for targeted HIV screening, since more than 40% of the clients had not previously been tested for HIV even though they engaged in sex-related HIV risk behaviour.
Resumo:
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity.
Resumo:
In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.
Resumo:
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Resumo:
Background and Aims The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below-and above-ground) and reproductive tissues.Methods Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.Key Results and Conclusions Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.
Resumo:
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Resumo:
BACKGROUND: Greater tobacco smoking and alcohol consumption and lower body mass index (BMI) increase odds ratios (OR) for oral cavity, oropharyngeal, hypopharyngeal, and laryngeal cancers; however, there are no comprehensive sex-specific comparisons of ORs for these factors. METHODS: We analyzed 2,441 oral cavity (925 women and 1,516 men), 2,297 oropharynx (564 women and 1,733 men), 508 hypopharynx (96 women and 412 men), and 1,740 larynx (237 women and 1,503 men) cases from the INHANCE consortium of 15 head and neck cancer case-control studies. Controls numbered from 7,604 to 13,829 subjects, depending on analysis. Analyses fitted linear-exponential excess ORs models. RESULTS: ORs were increased in underweight (<18.5 BMI) relative to normal weight (18.5-24.9) and reduced in overweight and obese categories (>/=25 BMI) for all sites and were homogeneous by sex. ORs by smoking and drinking in women compared with men were significantly greater for oropharyngeal cancer (p < 0.01 for both factors), suggestive for hypopharyngeal cancer (p = 0.05 and p = 0.06, respectively), but homogeneous for oral cavity (p = 0.56 and p = 0.64) and laryngeal (p = 0.18 and p = 0.72) cancers. CONCLUSIONS: The extent that OR modifications of smoking and drinking by sex for oropharyngeal and, possibly, hypopharyngeal cancers represent true associations, or derive from unmeasured confounders or unobserved sex-related disease subtypes (e.g., human papillomavirus-positive oropharyngeal cancer) remains to be clarified.
Resumo:
BACKGROUND: After age, sex is the most important risk factor for coronary artery disease (CAD). The mechanism through which women are protected from CAD is still largely unknown, but the observed sex difference suggests the involvement of the reproductive steroid hormone signaling system. Genetic association studies of the gene-encoding Estrogen Receptor α (ESR1) have shown conflicting results, although only a limited range of variation in the gene has been investigated. METHODS AND RESULTS: We exploited information made available by advanced new methods and resources in complex disease genetics to revisit the question of ESR1's role in risk of CAD. We performed a meta-analysis of 14 genome-wide association studies (CARDIoGRAM discovery analysis, N=≈87,000) to search for population-wide and sex-specific associations between CAD risk and common genetic variants throughout the coding, noncoding, and flanking regions of ESR1. In addition to samples from the MIGen (N=≈6000), WTCCC (N=≈7400), and Framingham (N=≈3700) studies, we extended this search to a larger number of common and uncommon variants by imputation into a panel of haplotypes constructed using data from the 1000 Genomes Project. Despite the widespread expression of ERα in vascular tissues, we found no evidence for involvement of common or low-frequency genetic variation throughout the ESR1 gene in modifying risk of CAD, either in the general population or as a function of sex. CONCLUSIONS: We suggest that future research on the genetic basis of sex-related differences in CAD risk should initially prioritize other genes in the reproductive steroid hormone biosynthesis system.
Resumo:
Individuals need to adapt to their local environment in order to survive. When selection pressures differ in local populations, polymorphism can evolve. Colour polymorphism is one of the most obvious polymorphisms since it is readily observable. Different sources of colouration exist, but melanin-based colouration is one of the most common in birds. The melanocortin system produces this colouration and because the melanocortin system has pleiotropic effects on behavioural and physiological traits, it is a good candidate to be an underlying mechanism to explain the maintenance of colour polymorphism. In this thesis I studied three different raptors which all display melanin-based colouration; barn owls (Tyto alba), tawny owls (Strix aluco) and Eurasian kestrels (Falco tinnunculus). The main question was if there was a relationship between melanin-based colouration and individual behavioural differences. The underlying hypothesis is that colour could be a signal of certain adaptive traits. Our goal was to find evolutionary explanations for the persistence of colour polymorphism. I found that nestling kestrels and barn owls differ in anti-predatory behaviour, with respect to their melanic colouration (chapters 1 and 2). Darker individuals show less reaction to human handling, but in kestrels aggression and colouration are related in opposite ways than in barn owls. More reddish barn owls travel greater distances in natal dispersal and this behaviour is repeatable between parents and same sex offspring (chapter 3). Dark reddish tawny owls defend their nests more intensely against intruders and appear to suffer less from nest predation (chapter 4). Finally I show that polymorphism in the Melanocortin 1 receptor gene (MC1R), which is strongly correlated with reddish colouration in the barn owl, is related to natal dispersal distance, providing a first indication for a genetic basis of the relation between this behaviour and colouration (chapter 5). My results demonstrate a clear link between melanin-based colouration and animal personality traits. I demonstrated this relation in three different species, which shows there is most likely a general underlying mechanism responsible. Different predation pressures might have shaped the reactions to predation, but also differences in sex-related colouration. Male-like and female-like colouration might signal more or less aggressive behaviour. Fluctuating environmental conditions might cause different individual strategies to produce equal reproductive success. The melanocortin system with its pleiotropic effects might be an underlying mechanism, as suggested by the results from the genetic polymorphism, the similar results found in these three species and by the similar relations reported in other species. This thesis demonstrates that colouration and individual differences are correlated and it provides the first glimpse of an underlying system. We can now conduct a more directed search for underlying mechanisms and evolutionary explanations with the use of quantitative genetic methods.