79 resultados para Sensory Drive
em Université de Lausanne, Switzerland
Resumo:
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.
Resumo:
The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.
Resumo:
Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups.
Resumo:
The mechanisms regulating systemic and mucosal IgA responses in the respiratory tract are incompletely understood. Using virus-like particles loaded with single-stranded RNA as a ligand for TLR7, we found that systemic vs mucosal IgA responses in mice were differently regulated. Systemic IgA responses following s.c. immunization were T cell independent and did not require TACI or TGFbeta, whereas mucosal IgA production was dependent on Th cells, TACI, and TGFbeta. Strikingly, both responses required TLR7 signaling, but systemic IgA depended upon TLR7 signaling directly to B cells whereas mucosal IgA required TLR7 signaling to lung dendritic cells and alveolar macrophages. Our data show that IgA switching is controlled differently according to the cell type receiving TLR signals. This knowledge should facilitate the development of IgA-inducing vaccines.
Resumo:
Many studies based on either an experimental or an epidemiological approach, have shown that the ability to drive is impaired when the driver is under the influence of cannabis. Baseline performances of heavy users remain impaired even after several weeks of abstinence. Symptoms of cannabis abuse and dependence are generally considered incompatible with safe driving. Recently, it has been shown that traffic safety can be increased by reporting the long-term unfit drivers to the driver licensing authorities and referring the cases for further medical assessment. Evaluation of the frequency of cannabis use is a prerequisite for a reliable medical assessment of the fitness to drive. In a previous paper we advocated the use of two thresholds based on 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) concentration in whole blood to help to distinguish occasional cannabis users (≤3μg/L) from heavy regular smokers (≥40μg/L). These criteria were established on the basis of results obtained in a controlled cannabis smoking study with placebo, carried out with two groups of young male volunteers; the first group was characterized by a heavy use (≥10 joints/month) while the second group was made up of occasional users smoking at most 1 joint/week. However, to date, these cutoffs have not been adequately assessed under real conditions. Their validity can now be evaluated and confirmed with 146 traffic offenders' real cases in which the whole blood cannabinoid concentrations and the frequency of cannabis use are known. The two thresholds were not challenged by the presence of ethanol (40% of cases) and of other therapeutic and illegal drugs (24%). Thus, we propose the following procedure that can be very useful in the Swiss context but also in other countries with similar traffic policies: if the whole blood THCCOOH concentration is higher than 40μg/L, traffic offenders must be directed first and foremost toward medical assessment of their fitness to drive. This evaluation is not recommended if the THCCOOH concentration is lower than 3μg/L and if the self-rated frequency of cannabis use is less than 1 time/week. A THCCOOH level between these two thresholds cannot be reliably interpreted. In such a case, further medical assessment and follow-up of the fitness to drive are also suggested, but with lower priority.
Resumo:
Research has suggested that exogenous opioid substances can have direct effects on cardiac muscle or influence neurotransmitter release via presynaptic modulation of neuronal inputs to the heart. In the present study, multiple-labelling immunohistochemistry was employed to determine the distribution of endogenous opioid peptides within the guinea-pig heart. Approximately 40% of cardiac ganglion cells contained immunoreactivity for dynorphin A (1-8), dynorphin A (1-17) and dynorphin B whilst 20% displayed leu-enkephalin immunoreactivity. Different populations of opioid-containing ganglion cells were identified according to the co-existence of opioid immunoreactivity with immunoreactivity for somatostatin and neuropeptide Y. Immunoreactivity for prodynorphin-derived peptides was observed in many sympathetic axons in the heart and was also observed, though to a lesser extent, in sensory axons. Leu-enkephalin immunoreactivity was observed in occasional sympathetic and sensory axons. No immunoreactivity was observed for met-enkephalin-arg-gly-leu or for beta-endorphin. These results demonstrate that prodynorphin-derived peptides are present in parasympathetic, sympathetic and sensory nerves within the heart, but suggest that only the prodynorphin gene is expressed in guinea-pig cardiac nerves. This study has shown that endogenous opioid peptides are well placed to regulate cardiac function via both autonomic and sensory pathways.
Resumo:
PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. Clin Cancer Res; 19(13); 3439-49. ©2013 AACR.
Resumo:
Experts in the field of conversion disorder have suggested for the upcoming DSM-V edition to put less weight on the associated psychological factors and to emphasise the role of clinical findings. Indeed, a critical step in reaching a diagnosis of conversion disorder is careful bedside neurological examination, aimed at excluding organic signs and identifying 'positive' signs suggestive of a functional disorder. These positive signs are well known to all trained neurologists but their validity is still not established. The aim of this study is to provide current evidence regarding their sensitivity and specificity. We conducted a systematic search on motor, sensory and gait functional signs in Embase, Medline, PsycINfo from 1965 to June 2012. Studies in English, German or French reporting objective data on more than 10 participants in a controlled design were included in a systematic review. Other relevant signs are discussed in a narrative review. Eleven controlled studies (out of 147 eligible articles) describing 14 signs (7 motor, 5 sensory, 2 gait) reported low sensitivity of 8-100% but high specificity of 92-100%. Studies were evidence class III, only two had a blinded design and none reported on inter-rater reliability of the signs. Clinical signs for functional neurological symptoms are numerous but only 14 have been validated; overall they have low sensitivity but high specificity and their use should thus be recommended, especially with the introduction of the new DSM-V criteria.
Resumo:
Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.
Resumo:
The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.
Resumo:
Development of allergic asthma is a complex process involving immune, neuronal and tissue cells. In the lung, Clara cells represent a major part of the "immunomodulatory barrier" of the airway epithelium. To understand the contribution of these cells to the inflammatory outcome of asthma, disease development was assessed using an adjuvant-free ovalbumin model. Mice were sensitised with subcutaneous injections of 10 μg endotoxin-free ovalbumin in conjunction with naphthalene-induced Clara cell depletion. Clara epithelial cell depletion in the lung strongly reduced eosinophil influx, which correlated with decreased eotaxin levels and, moreover, diminished the T-helper cell type 2 inflammatory response, including interleukin (IL)-4, IL-5 and IL-13. In contrast, airway hyperresponsiveness was increased. Further investigation revealed Clara cells as the principal source of eotaxin in the lung. These findings are the first to show that Clara airway epithelial cells substantially contribute to the infiltration of eotaxin-responsive CCR3+ immune cells and augment the allergic immune response in the lung. The present study identifies Clara cells as a potential therapeutic target in inflammatory lung diseases such as allergic asthma.