5 resultados para Sensor de Hartmann-Shack
em Université de Lausanne, Switzerland
Resumo:
For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patient's blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.
Resumo:
OBJECTIVES: : To evaluate the outcome after Hartmann's procedure (HP) versus primary anastomosis (PA) with diverting ileostomy for perforated left-sided diverticulitis. BACKGROUND: : The surgical management of left-sided colonic perforation with purulent or fecal peritonitis remains controversial. PA with ileostomy seems to be superior to HP; however, results in the literature are affected by a significant selection bias. No randomized clinical trial has yet compared the 2 procedures. METHODS: : Sixty-two patients with acute left-sided colonic perforation (Hinchey III and IV) from 4 centers were randomized to HP (n = 30) and to PA (with diverting ileostomy, n = 32), with a planned stoma reversal operation after 3 months in both groups. Data were analyzed on an intention-to-treat basis. The primary end point was the overall complication rate. The study was discontinued following an interim analysis that found significant differences of relevant secondary end points as well as a decreasing accrual rate (NCT01233713). RESULTS: : Patient demographics were equally distributed in both groups (Hinchey III: 76% vs 75% and Hinchey IV: 24% vs 25%, for HP vs PA, respectively). The overall complication rate for both resection and stoma reversal operations was comparable (80% vs 84%, P = 0.813). Although the outcome after the initial colon resection did not show any significant differences (mortality 13% vs 9% and morbidity 67% vs 75% in HP vs PA), the stoma reversal rate after PA with diverting ileostomy was higher (90% vs 57%, P = 0.005) and serious complications (Grades IIIb-IV: 0% vs 20%, P = 0.046), operating time (73 minutes vs 183 minutes, P < 0.001), hospital stay (6 days vs 9 days, P = 0.016), and lower in-hospital costs (US $16,717 vs US $24,014) were significantly reduced in the PA group. CONCLUSIONS: : This is the first randomized clinical trial favoring PA with diverting ileostomy over HP in patients with perforated diverticulitis.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.
Resumo:
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.