62 resultados para Scramble-competition Polygyny

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In species with parental care, siblings compete for access to food resources. Typically, they vocally signal their level of need to each other and to parents, and jostle for the position in the nest where parents deliver food. Although food shortage and social interactions are stressful, little is known about the effect of stress on the way siblings resolve the conflict over how food is shared among them. Because glucocorticoid hormones mediate physiological and behavioral responses to stressors, we tested whether corticosterone, the main glucocorticoid in birds, modulates physical and vocal signaling used by barn owl siblings (Tyto alba) to compete for food. Although corticosterone-implanted (cort-) nestlings and placebo-nestlings were similarly successful to monopolize food, they employed different behavioral strategies. Compared to placebo-nestlings, cort-individuals reduced the rate of vocally communicating with their siblings (but not with their parents) but were positioned closer to the nest-box entrance where parents predictably deliver food. Therefore, corticosterone induced nestlings to increase their effort in physical competition for the best nest position at the expense of investment in sib-sib communication without modifying vocal begging signals directed to parents. This suggests that in the barn owl stress alters nestlings' behavior and corticosterone could mediate the trade-off between scramble competition and vocal sib-sib communication. We conclude that stressful environments may prevent the evolution of sib-sib communication as a way to resolve family conflicts peacefully.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In birds, sibling competition encompasses several activities, one of which is jostling for position, that is, competing for the location in the nest where parents predictably deliver food items. We hypothesized that nestlings that compete by jostling for position may fall out of the nest either accidentally or because siblings push each other to reduce brood size. This hypothesis predicts that in a competitive environment needy nestlings trade-off the benefit of being fed against the cost of falling out of the nest. As a first attempt to evaluate this hypothesis, we experimentally manipulated the number of young per brood in the colonial Alpine swift, Apus melba. Nestlings fell out of their colony more frequently when reared in enlarged than in reduced broods. Because brood size manipulation affects not only the number of young per nest but also their body condition, we analysed an extended data set to disentangle these two factors. This analysis showed that, independently of brood size, nestlings in poor condition and those reared in broods where sibling differed markedly in weight were more likely to disappear from the colony. Nestling disappearance also occurred predominantly in nests close to the colony entrances. Although nestling swifts can wander in the colony and become adopted in neighbouring nests, we found no evidence that wandering per se increased the risk of falling out of the colony. Our study therefore highlights a novel cost of scramble competition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rate of food consumption is a major factor affecting success in scramble competition for a limited amount of easy-to-find food. Accordingly, several studies report positive genetic correlations between larval competitive ability and feeding rate in Drosophila; both become enhanced in populations evolving under larval crowding. Here, we report the experimental evolution of enhanced competitive ability in populations of D. melanogaster previously maintained for 84 generations at low density on an extremely poor larval food. In contrast to previous studies, greater competitive ability was not associated with the evolution of higher feeding rate; if anything, the correlation between the two traits across lines tended to be negative. Thus, enhanced competitive ability may be favored by nutritional stress even when competition is not intense, and competitive ability may be decoupled from the rate of food consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parents allocate food resources to their offspring in proportion to the intensity of begging behaviour. Begging encompasses several activities including vocalizations that should honestly signal need and jostling for the position in the nest where parents predictably deliver food items. Although siblings are known to adjust begging level to each other, the underlying mechanism remains unknown. We examined this issue in experimental two-chick broods of the barn owl, Tyto alba, a species in which siblings communicate vocally with each other in the prolonged absence of parents. The function of sib-sib vocal communication, so-called sibling negotiation, is to resolve conflicts over which individual will have priority of access to the next delivered indivisible food item. We found that when a nestling produced longer negotiation calls and stood closer to the nestbox entrance in the absence of parents, its sibling vocally negotiated at a lower rate. Additionally, when an individual produced more negotiation calls in the absence of parents, its sibling begged less intensely at the parent's return, with begging being the key factor that determined which nestling obtained a food item. We conclude that position in the nest and the duration of negotiation calls produced in the absence of parents influence the rate of producing negotiation calls, which in turn influences the rate at which siblings beg for food from their parents. Adjusting begging behaviour could therefore depend on complex sib-sib interactions taking place in the prolonged absence of parents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astract: The aim of this thesis was to investigate how the presence of multiple queens (polygyny) affects social organization in colonies of the ant Formica exsecta. This is important because polygyny results in reduced relatedness among colony members and therefore reflects a potential paradox for altruistic cooperation being explained by inclusive fitness theory. The reason for this is that workers in polygynous colonies rear no longer only their siblings (high inclusive fitness gain) but also more distantly ox even unrelated brood (low or no inclusive fitness gain). All research projects conducted in this thesis are novel and significant contributions to the understanding of the social evolution of insect societies. We used a mixture of experimental and observational methodologies in laboratory and field colonies of F. exsecta to examine four important aspects of social life that are impacted by polygyny. First, we investigated the influence of queen number on colony sex allocation and found that the number of queens present in a colony significantly affects colony sex ratio investment. The data were consistent with the queen-replenishment hypothesis, which is based on the observation that newly mated queens are often recruited back to their parental nest. According to this theory, colonies containing many queens should only produce males due to local resource competition (i.e. related queens compete for common resources), whereas colonies hosting few queens benefit most from producing new queens to ensure colony survival. Second, we examined how reproduction is partitioned among nestmate queens. We detected a novel pattern of reproductive partitioning whereby a high proportion of queens were completely specialized in the production of only a subset of offspring classes produced within a colony, which might translate into great differences in reproductive success between queens. Third, we could demonstrate that F. exsecta workers indiscriminately reared highly related and unrelated brood although such nepotistic behaviour (preferential rearing of relatives) would be predicted by inclusive fitness theory. The absence of nepotism is probably best explained by its negative effects on overall colony efficiency. Finally, we conducted a detailed population genetic analysis, which revealed that the genetic population structure is different for queens and workers. Our data were best explained with queens forming family-based groups (multicolonial population structure), whereas workers from several nests seemed to be grouped into larger unites (unicolonial population structure) with workers moving freely between neighbouring nests. Altogether, the presented work significantly increased our understanding of the complex organization of polygynous social insect colonies and shows how an important life history trait such as queen number affects social organization at various levels. Résumé: Le but de cette thèse était d'étudier comment la présence de plusieurs reines par colonie (polygynie) influence la vie sociale chez la fourmi Formica exsecta. Ce sujet est important parce que la polygynie chez les insectes sociaux présente un passible paradoxe au niveau de la théorie du "fitness inclusive". Ce paradoxe est basé sur le fait que les ouvrières n'élèvent plus uniquement leurs frères et soeurs (gain de "fitness inclusive" maximale), mais également des individus moins ou pas du tout apparentés (gain de "fitness inclusive" réduit ou absent). Tous les projets de recherche présentés au cours de cette thèse apportent une meilleure compréhension et connaissance au niveau de l'organisation des colonies chez les insectes sociaux. Nous avons employé des méthodes d'observation et de laboratoire afin de mettre en évidence des aspects importants de la vie sociale chez les fourmis influencés par la polygynie. Quatre aspects ont été caractérisés : (1) l'influence du nombre de reines sur le sexe ratio produit par la colonie. Nous avons démontré que les colonies contenant beaucoup de reines produisaient rarement des reines tandis que les colonies contenant peu de reines souvent investissaient beaucoup de ressources dans la production des reines. Ces résultats sont en accord avec la "queen-replenishment hypothesis" qui est basé sur l'observation que les nouvelles reines sont recrutées dans la colonie où elles étaient nées. Cette hypothèse postule que la production des reines est défavorable dans les colonies contenant beaucoup de reines, parce que ces reines apparentées, rentrent en compétition pour des ressources communes. Au contraire, la production des reines est favorable dans des colonies contenant peu de reines afin d'assurer la survie de la colonie ; (2) comment les reines dans une colonie répartissent leur reproduction. Nous avons mis en évidence un nouveau pattern de cette répartition où une grande proportion de reines est complètement spécialisée dans la production d'un seul type de couvain ce qui probablement aboutit à des différences significatives entre reines dans le succès reproducteur ; (3) la capacité des ouvrières à discriminer un couvain de soeur d'un couvain non apparenté. Les résultats ont montré que les ouvrières ne font pas de discrimination entre le couvain de soeur et le couvain non apparenté ce qui n'est pas en accord avec la théorie de la "fitness inclusive". Cette absence de discrimination est probablement due à des effets négatifs comme par exemple la diminution de la production du couvain; (4) la structure génétique d'une population de F. exsecta. Nous avons mis en évidence que la structure génétique entre des groupes de reines est significativement différente de la structure génétique entre des groupes d'ouvrières. Les données suggèrent que les reines forment des groupes basés sur une structure familiale tandis que les ouvrières sont groupées dans des unités plus grandes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial antigen-presenting cells (aAPC) are widely used for both clinical and basic research applications, as cell-based or bead-based scaffolds, combining immune synapse components of interest. Adequate and controlled preparation of aAPCs is crucial for subsequent immunoassays. We reveal that certain proteins such as activatory anti-CD3 antibody can be out-competed by other proteins (e.g. inhibitory receptor ligands such as PDL1:Fc) during the coating of aAPC beads, under the usually performed coating procedures. This may be misleading, as we found that decreased CD8 T cell activity was not due to inhibitory receptor triggering but rather because of unexpectedly low anti-CD3 antibody density on the beads upon co-incubation with inhibitory receptor ligands. We propose an optimized protocol, and emphasize the need to quality-control the coating of proteins on aAPC beads prior to their use in immunoassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To resolve the share of limited resources, animals often compete through exchange of signals about their relative motivation to compete. When two competitors are similarly motivated, the resolution of conflicts may be achieved in the course of an interactive process. In barn owls, Tyto alba, in which siblings vocally compete during the prolonged absence of parents over access to the next delivered food item, we investigated what governs the decision to leave or enter a contest, and at which level. Siblings alternated periods during which one of the two individuals vocalized more than the other. Individuals followed turn-taking rules to interrupt each other and momentarily dominate the vocal competition. These social rules were weakly sensitive to hunger level and age hierarchy. Hence, the investment in a conflict is determined not only by need and resource-holding potential, but also by social interactions. The use of turn-taking rules governing individual vocal investment has rarely been shown in a competitive context. We hypothesized that these rules would allow individuals to remain alert to one another's motivation while maintaining the cost of vocalizing at the lowest level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adoption is frequent in colonial animals where opportunities for dependent young to receive care from nonbiological parents are high. The departure of dependent young from their original family to seek adoption in neighbouring families is thought to be induced by sibling competition for access to limited resources provided by poor-quality parents. We tested this hypothesis in the colonial Alpine swift by manipulating the number of young reared per brood, with the prediction that offspring from enlarged broods switch nests more frequently than those from reduced broods. Although nestling swifts hatch with little locomotor activity, from 20 days until their first flight at 50-70 days they frequently move out of their nests to seek adoption in neighbouring families. Although nestlings reared in experimentally enlarged broods were lighter and their body mass at day 20 after hatching was more variable than in nestlings reared in reduced broods, there was no difference between the two treatments in the frequency of nests switching and in the age when nestlings switched nests for the first time. However, consistent with other evidence that nest switching by nestling swifts evolved as a strategy to reduce ectoparasite load, young from broods with naturally high numbers of the ectoparasitic louse fly Crataerina melbae were more prone to switch nests. This shows that ectoparasitism rather than sibling competition is a key proximate factor promoting the evolution of nest switching in the colonial Alpine swift. (c) 2006 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.